Kruskal算法 之 Java详解

最小生成树

在含有n个顶点的连通图中选择n-1条边,构成一棵极小连通子图,并使该连通子图中n-1条边上权值之和达到最小,则称其为连通网的最小生成树。

Kruskal算法 之 Java详解_第1张图片

例如,对于如上图G4所示的连通网可以有多棵权值总和不相同的生成树。

Kruskal算法 之 Java详解_第2张图片

克鲁斯卡尔算法介绍

克鲁斯卡尔(Kruskal)算法,是用来求加权连通图的最小生成树的算法。

基本思想:按照权值从小到大的顺序选择n-1条边,并保证这n-1条边不构成回路。
具体做法:首先构造一个只含n个顶点的森林,然后依权值从小到大从连通网中选择边加入到森林中,并使森林中不产生回路,直至森林变成一棵树为止。

克鲁斯卡尔算法图解

以上图G4为例,来对克鲁斯卡尔进行演示(假设,用数组R保存最小生成树结果)。

Kruskal算法 之 Java详解_第3张图片

第1步:将边<E,F>加入R中。
边<E,F>的权值最小,因此将它加入到最小生成树结果R中。
第2步:将边<C,D>加入R中。
上一步操作之后,边<C,D>的权值最小,因此将它加入到最小生成树结果R中。
第3步:将边<D,E>加入R中。
上一步操作之后,边<D,E>的权值最小,因此将它加入到最小生成树结果R中。
第4步:将边<B,F>加入R中。
上一步操作之后,边<C,E>的权值最小,但<C,E>会和已有的边构成回路;因此,跳过边<C,E>。同理,跳过边<C,F>。将边<B,F>加入到最小生成树结果R中。
第5步:将边<E,G>加入R中。
上一步操作之后,边<E,G>的权值最小,因此将它加入到最小生成树结果R中。
第6步:将边<A,B>加入R中。
上一步操作之后,边<F,G>的权值最小,但<F,G>会和已有的边构成回路;因此,跳过边<F,G>。同理,跳过边<B,C>。将边<A,B>加入到最小生成树结果R中。

此时,最小生成树构造完成!它包括的边依次是:<E,F> <C,D> <D,E> <B,F> <E,G> <A,B>

克鲁斯卡尔算法分析

根据前面介绍的克鲁斯卡尔算法的基本思想和做法,我们能够了解到,克鲁斯卡尔算法重点需要解决的以下两个问题:
问题一 对图的所有边按照权值大小进行排序。
问题二 将边添加到最小生成树中时,怎么样判断是否形成了回路。

问题一很好解决,采用排序算法进行排序即可。

问题二,处理方式是:记录顶点在”最小生成树”中的终点,顶点的终点是”在最小生成树中与它连通的最大顶点”(关于这一点,后面会通过图片给出说明)。然后每次需要将一条边添加到最小生存树时,判断该边的两个顶点的终点是否重合,重合的话则会构成回路。 以下图来进行说明:

在将<E,F> <C,D> <D,E>加入到最小生成树R中之后,这几条边的顶点就都有了终点:

(01) C的终点是F。 
(02) D的终点是F。 
(03) E的终点是F。 
(04) F的终点是F

关于终点,就是将所有顶点按照从小到大的顺序排列好之后;某个顶点的终点就是”与它连通的最大顶点”。 因此,接下来,虽然<C,E>是权值最小的边。但是C和E的重点都是F,即它们的终点相同,因此,将<C,E>加入最小生成树的话,会形成回路。这就是判断回路的方式。

克鲁斯卡尔算法的代码说明

有了前面的算法分析之后,下面我们来查看具体代码。这里选取”邻接矩阵”进行说明,对于”邻接表”实现的图在后面的源码中会给出相应的源码。

1. 基本定义

// 边的结构体
private static class EData {
    char start; // 边的起点
    char end;   // 边的终点
    int weight; // 边的权重

    public EData(char start, char end, int weight) {
        this.start = start;
        this.end = end;
        this.weight = weight;
    }
};

EData是邻接矩阵边对应的结构体。

public class MatrixUDG {

    private int mEdgNum;        // 边的数量
    private char[] mVexs;       // 顶点集合
    private int[][] mMatrix;    // 邻接矩阵
    private static final int INF = Integer.MAX_VALUE;   // 最大值

    ...
}

MatrixUDG是邻接矩阵对应的结构体。mVexs用于保存顶点,mEdgNum用于保存边数,mMatrix则是用于保存矩阵信息的二维数组。例如,mMatrix[i][j]=1,则表示”顶点i(即mVexs[i])”和”顶点j(即mVexs[j])”是邻接点;mMatrix[i][j]=0,则表示它们不是邻接点。

2. 克鲁斯卡尔算法

/* * 克鲁斯卡尔(Kruskal)最小生成树 */
public void kruskal() {
    int index = 0;                      // rets数组的索引
    int[] vends = new int[mEdgNum];     // 用于保存"已有最小生成树"中每个顶点在该最小树中的终点。
    EData[] rets = new EData[mEdgNum];  // 结果数组,保存kruskal最小生成树的边
    EData[] edges;                      // 图对应的所有边

    // 获取"图中所有的边"
    edges = getEdges();
    // 将边按照"权"的大小进行排序(从小到大)
    sortEdges(edges, mEdgNum);

    for (int i=0; i<mEdgNum; i++) {
        int p1 = getPosition(edges[i].start);      // 获取第i条边的"起点"的序号
        int p2 = getPosition(edges[i].end);        // 获取第i条边的"终点"的序号

        int m = getEnd(vends, p1);                 // 获取p1在"已有的最小生成树"中的终点
        int n = getEnd(vends, p2);                 // 获取p2在"已有的最小生成树"中的终点
        // 如果m!=n,意味着"边i"与"已经添加到最小生成树中的顶点"没有形成环路
        if (m != n) {
            vends[m] = n;                       // 设置m在"已有的最小生成树"中的终点为n
            rets[index++] = edges[i];           // 保存结果
        }
    }

    // 统计并打印"kruskal最小生成树"的信息
    int length = 0;
    for (int i = 0; i < index; i++)
        length += rets[i].weight;
    System.out.printf("Kruskal=%d: ", length);
    for (int i = 0; i < index; i++)
        System.out.printf("(%c,%c) ", rets[i].start, rets[i].end);
    System.out.printf("\n");
}

克鲁斯卡尔算法的源码

这里分别给出”邻接矩阵图”和”邻接表图”的克鲁斯卡尔算法源码。

1. 邻接矩阵源码(MatrixUDG.java)

/** * Java: Kruskal算法生成最小生成树(邻接矩阵) * * @author skywang * @date 2014/04/24 */

import java.io.IOException;
import java.util.Scanner;

public class MatrixUDG {

    private int mEdgNum;        // 边的数量
    private char[] mVexs;       // 顶点集合
    private int[][] mMatrix;    // 邻接矩阵
    private static final int INF = Integer.MAX_VALUE;   // 最大值

    /* * 创建图(自己输入数据) */
    public MatrixUDG() {

        // 输入"顶点数"和"边数"
        System.out.printf("input vertex number: ");
        int vlen = readInt();
        System.out.printf("input edge number: ");
        int elen = readInt();
        if ( vlen < 1 || elen < 1 || (elen > (vlen*(vlen - 1)))) {
            System.out.printf("input error: invalid parameters!\n");
            return ;
        }

        // 初始化"顶点"
        mVexs = new char[vlen];
        for (int i = 0; i < mVexs.length; i++) {
            System.out.printf("vertex(%d): ", i);
            mVexs[i] = readChar();
        }

        // 1. 初始化"边"的权值
        mEdgNum = elen;
        mMatrix = new int[vlen][vlen];
        for (int i = 0; i < vlen; i++) {
            for (int j = 0; j < vlen; j++) {
                if (i==j)
                    mMatrix[i][j] = 0;
                else
                    mMatrix[i][j] = INF;
            }
        }
        // 2. 初始化"边"的权值: 根据用户的输入进行初始化
        for (int i = 0; i < elen; i++) {
            // 读取边的起始顶点,结束顶点,权值
            System.out.printf("edge(%d):", i);
            char c1 = readChar();       // 读取"起始顶点"
            char c2 = readChar();       // 读取"结束顶点"
            int weight = readInt();     // 读取"权值"

            int p1 = getPosition(c1);
            int p2 = getPosition(c2);
            if (p1==-1 || p2==-1) {
                System.out.printf("input error: invalid edge!\n");
                return ;
            }

            mMatrix[p1][p2] = weight;
            mMatrix[p2][p1] = weight;
        }
    }

    /* * 创建图(用已提供的矩阵) * * 参数说明: * vexs -- 顶点数组 * matrix-- 矩阵(数据) */
    public MatrixUDG(char[] vexs, int[][] matrix) {

        // 初始化"顶点数"和"边数"
        int vlen = vexs.length;

        // 初始化"顶点"
        mVexs = new char[vlen];
        for (int i = 0; i < mVexs.length; i++)
            mVexs[i] = vexs[i];

        // 初始化"边"
        mMatrix = new int[vlen][vlen];
        for (int i = 0; i < vlen; i++)
            for (int j = 0; j < vlen; j++)
                mMatrix[i][j] = matrix[i][j];

        // 统计"边"
        mEdgNum = 0;
        for (int i = 0; i < vlen; i++)
            for (int j = i+1; j < vlen; j++)
                if (mMatrix[i][j]!=INF)
                    mEdgNum++;
    }

    /* * 返回ch位置 */
    private int getPosition(char ch) {
        for(int i=0; i<mVexs.length; i++)
            if(mVexs[i]==ch)
                return i;
        return -1;
    }

    /* * 读取一个输入字符 */
    private char readChar() {
        char ch='0';

        do {
            try {
                ch = (char)System.in.read();
            } catch (IOException e) {
                e.printStackTrace();
            }
        } while(!((ch>='a'&&ch<='z') || (ch>='A'&&ch<='Z')));

        return ch;
    }

    /* * 读取一个输入字符 */
    private int readInt() {
        Scanner scanner = new Scanner(System.in);
        return scanner.nextInt();
    }

    /* * 返回顶点v的第一个邻接顶点的索引,失败则返回-1 */
    private int firstVertex(int v) {

        if (v<0 || v>(mVexs.length-1))
            return -1;

        for (int i = 0; i < mVexs.length; i++)
            if (mMatrix[v][i]!=0 && mMatrix[v][i]!=INF)
                return i;

        return -1;
    }

    /* * 返回顶点v相对于w的下一个邻接顶点的索引,失败则返回-1 */
    private int nextVertex(int v, int w) {

        if (v<0 || v>(mVexs.length-1) || w<0 || w>(mVexs.length-1))
            return -1;

        for (int i = w + 1; i < mVexs.length; i++)
            if (mMatrix[v][i]!=0 && mMatrix[v][i]!=INF)
                return i;

        return -1;
    }

    /* * 深度优先搜索遍历图的递归实现 */
    private void DFS(int i, boolean[] visited) {

        visited[i] = true;
        System.out.printf("%c ", mVexs[i]);
        // 遍历该顶点的所有邻接顶点。若是没有访问过,那么继续往下走
        for (int w = firstVertex(i); w >= 0; w = nextVertex(i, w)) {
            if (!visited[w])
                DFS(w, visited);
        }
    }

    /* * 深度优先搜索遍历图 */
    public void DFS() {
        boolean[] visited = new boolean[mVexs.length];       // 顶点访问标记

        // 初始化所有顶点都没有被访问
        for (int i = 0; i < mVexs.length; i++)
            visited[i] = false;

        System.out.printf("DFS: ");
        for (int i = 0; i < mVexs.length; i++) {
            if (!visited[i])
                DFS(i, visited);
        }
        System.out.printf("\n");
    }

    /* * 广度优先搜索(类似于树的层次遍历) */
    public void BFS() {
        int head = 0;
        int rear = 0;
        int[] queue = new int[mVexs.length];            // 辅组队列
        boolean[] visited = new boolean[mVexs.length];  // 顶点访问标记

        for (int i = 0; i < mVexs.length; i++)
            visited[i] = false;

        System.out.printf("BFS: ");
        for (int i = 0; i < mVexs.length; i++) {
            if (!visited[i]) {
                visited[i] = true;
                System.out.printf("%c ", mVexs[i]);
                queue[rear++] = i;  // 入队列
            }

            while (head != rear) {
                int j = queue[head++];  // 出队列
                for (int k = firstVertex(j); k >= 0; k = nextVertex(j, k)) { //k是为访问的邻接顶点
                    if (!visited[k]) {
                        visited[k] = true;
                        System.out.printf("%c ", mVexs[k]);
                        queue[rear++] = k;
                    }
                }
            }
        }
        System.out.printf("\n");
    }

    /* * 打印矩阵队列图 */
    public void print() {
        System.out.printf("Martix Graph:\n");
        for (int i = 0; i < mVexs.length; i++) {
            for (int j = 0; j < mVexs.length; j++)
                System.out.printf("%10d ", mMatrix[i][j]);
            System.out.printf("\n");
        }
    }

    /* * prim最小生成树 * * 参数说明: * start -- 从图中的第start个元素开始,生成最小树 */
    public void prim(int start) {
        int num = mVexs.length;         // 顶点个数
        int index=0;                    // prim最小树的索引,即prims数组的索引
        char[] prims  = new char[num];  // prim最小树的结果数组
        int[] weights = new int[num];   // 顶点间边的权值

        // prim最小生成树中第一个数是"图中第start个顶点",因为是从start开始的。
        prims[index++] = mVexs[start];

        // 初始化"顶点的权值数组",
        // 将每个顶点的权值初始化为"第start个顶点"到"该顶点"的权值。
        for (int i = 0; i < num; i++ )
            weights[i] = mMatrix[start][i];
        // 将第start个顶点的权值初始化为0。
        // 可以理解为"第start个顶点到它自身的距离为0"。
        weights[start] = 0;

        for (int i = 0; i < num; i++) {
            // 由于从start开始的,因此不需要再对第start个顶点进行处理。
            if(start == i)
                continue;

            int j = 0;
            int k = 0;
            int min = INF;
            // 在未被加入到最小生成树的顶点中,找出权值最小的顶点。
            while (j < num) {
                // 若weights[j]=0,意味着"第j个节点已经被排序过"(或者说已经加入了最小生成树中)。
                if (weights[j] != 0 && weights[j] < min) {
                    min = weights[j];
                    k = j;
                }
                j++;
            }

            // 经过上面的处理后,在未被加入到最小生成树的顶点中,权值最小的顶点是第k个顶点。
            // 将第k个顶点加入到最小生成树的结果数组中
            prims[index++] = mVexs[k];
            // 将"第k个顶点的权值"标记为0,意味着第k个顶点已经排序过了(或者说已经加入了最小树结果中)。
            weights[k] = 0;
            // 当第k个顶点被加入到最小生成树的结果数组中之后,更新其它顶点的权值。
            for (j = 0 ; j < num; j++) {
                // 当第j个节点没有被处理,并且需要更新时才被更新。
                if (weights[j] != 0 && mMatrix[k][j] < weights[j])
                    weights[j] = mMatrix[k][j];
            }
        }

        // 计算最小生成树的权值
        int sum = 0;
        for (int i = 1; i < index; i++) {
            int min = INF;
            // 获取prims[i]在mMatrix中的位置
            int n = getPosition(prims[i]);
            // 在vexs[0...i]中,找出到j的权值最小的顶点。
            for (int j = 0; j < i; j++) {
                int m = getPosition(prims[j]);
                if (mMatrix[m][n]<min)
                    min = mMatrix[m][n];
            }
            sum += min;
        }
        // 打印最小生成树
        System.out.printf("PRIM(%c)=%d: ", mVexs[start], sum);
        for (int i = 0; i < index; i++)
            System.out.printf("%c ", prims[i]);
        System.out.printf("\n");
    }

    /* * 克鲁斯卡尔(Kruskal)最小生成树 */
    public void kruskal() {
        int index = 0;                      // rets数组的索引
        int[] vends = new int[mEdgNum];     // 用于保存"已有最小生成树"中每个顶点在该最小树中的终点。
        EData[] rets = new EData[mEdgNum];  // 结果数组,保存kruskal最小生成树的边
        EData[] edges;                      // 图对应的所有边

        // 获取"图中所有的边"
        edges = getEdges();
        // 将边按照"权"的大小进行排序(从小到大)
        sortEdges(edges, mEdgNum);

        for (int i=0; i<mEdgNum; i++) {
            int p1 = getPosition(edges[i].start);      // 获取第i条边的"起点"的序号
            int p2 = getPosition(edges[i].end);        // 获取第i条边的"终点"的序号

            int m = getEnd(vends, p1);                 // 获取p1在"已有的最小生成树"中的终点
            int n = getEnd(vends, p2);                 // 获取p2在"已有的最小生成树"中的终点
            // 如果m!=n,意味着"边i"与"已经添加到最小生成树中的顶点"没有形成环路
            if (m != n) {
                vends[m] = n;                       // 设置m在"已有的最小生成树"中的终点为n
                rets[index++] = edges[i];           // 保存结果
            }
        }

        // 统计并打印"kruskal最小生成树"的信息
        int length = 0;
        for (int i = 0; i < index; i++)
            length += rets[i].weight;
        System.out.printf("Kruskal=%d: ", length);
        for (int i = 0; i < index; i++)
            System.out.printf("(%c,%c) ", rets[i].start, rets[i].end);
        System.out.printf("\n");
    }

    /* * 获取图中的边 */
    private EData[] getEdges() {
        int index=0;
        EData[] edges;

        edges = new EData[mEdgNum];
        for (int i=0; i < mVexs.length; i++) {
            for (int j=i+1; j < mVexs.length; j++) {
                if (mMatrix[i][j]!=INF) {
                    edges[index++] = new EData(mVexs[i], mVexs[j], mMatrix[i][j]);
                }
            }
        }

        return edges;
    }

    /* * 对边按照权值大小进行排序(由小到大) */
    private void sortEdges(EData[] edges, int elen) {

        for (int i=0; i<elen; i++) {
            for (int j=i+1; j<elen; j++) {

                if (edges[i].weight > edges[j].weight) {
                    // 交换"边i"和"边j"
                    EData tmp = edges[i];
                    edges[i] = edges[j];
                    edges[j] = tmp;
                }
            }
        }
    }

    /* * 获取i的终点 */
    private int getEnd(int[] vends, int i) {
        while (vends[i] != 0)
            i = vends[i];
        return i;
    }

    // 边的结构体
    private static class EData {
        char start; // 边的起点
        char end;   // 边的终点
        int weight; // 边的权重

        public EData(char start, char end, int weight) {
            this.start = start;
            this.end = end;
            this.weight = weight;
        }
    };


    public static void main(String[] args) {
        char[] vexs = {'A', 'B', 'C', 'D', 'E', 'F', 'G'};
        int matrix[][] = {
                 /*A*//*B*//*C*//*D*//*E*//*F*//*G*/
          /*A*/ {   0,  12, INF, INF, INF,  16,  14},
          /*B*/ {  12,   0,  10, INF, INF,   7, INF},
          /*C*/ { INF,  10,   0,   3,   5,   6, INF},
          /*D*/ { INF, INF,   3,   0,   4, INF, INF},
          /*E*/ { INF, INF,   5,   4,   0,   2,   8},
          /*F*/ {  16,   7,   6, INF,   2,   0,   9},
          /*G*/ {  14, INF, INF, INF,   8,   9,   0}};
        MatrixUDG pG;

        // 自定义"图"(输入矩阵队列)
        //pG = new MatrixUDG();
        // 采用已有的"图"
        pG = new MatrixUDG(vexs, matrix);

        //pG.print(); // 打印图
        //pG.DFS(); // 深度优先遍历
        //pG.BFS(); // 广度优先遍历
        //pG.prim(0); // prim算法生成最小生成树
        pG.kruskal();   // Kruskal算法生成最小生成树
    }
}

2. 邻接表源码(ListUDG.java)

/** * Java prim算法生成最小生成树(邻接表) * * @author skywang * @date 2014/04/23 */

import java.io.IOException;
import java.util.Scanner;

public class ListUDG {
    private static int INF = Integer.MAX_VALUE;

    // 邻接表中表对应的链表的顶点
    private class ENode {
        int ivex;       // 该边所指向的顶点的位置
        int weight;     // 该边的权
        ENode nextEdge; // 指向下一条弧的指针
    }

    // 邻接表中表的顶点
    private class VNode {
        char data;          // 顶点信息
        ENode firstEdge;    // 指向第一条依附该顶点的弧
    };

    private int mEdgNum;    // 边的数量
    private VNode[] mVexs;  // 顶点数组


    /* * 创建图(自己输入数据) */
    public ListUDG() {

        // 输入"顶点数"和"边数"
        System.out.printf("input vertex number: ");
        int vlen = readInt();
        System.out.printf("input edge number: ");
        int elen = readInt();
        if ( vlen < 1 || elen < 1 || (elen > (vlen*(vlen - 1)))) {
            System.out.printf("input error: invalid parameters!\n");
            return ;
        }

        // 初始化"顶点"
        mVexs = new VNode[vlen];
        for (int i = 0; i < mVexs.length; i++) {
            System.out.printf("vertex(%d): ", i);
            mVexs[i] = new VNode();
            mVexs[i].data = readChar();
            mVexs[i].firstEdge = null;
        }

        // 初始化"边"
        mEdgNum = elen;
        for (int i = 0; i < elen; i++) {
            // 读取边的起始顶点和结束顶点
            System.out.printf("edge(%d):", i);
            char c1 = readChar();
            char c2 = readChar();
            int weight = readInt();

            int p1 = getPosition(c1);
            int p2 = getPosition(c2);
            // 初始化node1
            ENode node1 = new ENode();
            node1.ivex = p2;
            node1.weight = weight;
            // 将node1链接到"p1所在链表的末尾"
            if(mVexs[p1].firstEdge == null)
              mVexs[p1].firstEdge = node1;
            else
                linkLast(mVexs[p1].firstEdge, node1);
            // 初始化node2
            ENode node2 = new ENode();
            node2.ivex = p1;
            node2.weight = weight;
            // 将node2链接到"p2所在链表的末尾"
            if(mVexs[p2].firstEdge == null)
              mVexs[p2].firstEdge = node2;
            else
                linkLast(mVexs[p2].firstEdge, node2);
        }
    }

    /* * 创建图(用已提供的矩阵) * * 参数说明: * vexs -- 顶点数组 * edges -- 边 */
    public ListUDG(char[] vexs, EData[] edges) {

        // 初始化"顶点数"和"边数"
        int vlen = vexs.length;
        int elen = edges.length;

        // 初始化"顶点"
        mVexs = new VNode[vlen];
        for (int i = 0; i < mVexs.length; i++) {
            mVexs[i] = new VNode();
            mVexs[i].data = vexs[i];
            mVexs[i].firstEdge = null;
        }

        // 初始化"边"
        mEdgNum = elen;
        for (int i = 0; i < elen; i++) {
            // 读取边的起始顶点和结束顶点
            char c1 = edges[i].start;
            char c2 = edges[i].end;
            int weight = edges[i].weight;

            // 读取边的起始顶点和结束顶点
            int p1 = getPosition(c1);
            int p2 = getPosition(c2);
            // 初始化node1
            ENode node1 = new ENode();
            node1.ivex = p2;
            node1.weight = weight;
            // 将node1链接到"p1所在链表的末尾"
            if(mVexs[p1].firstEdge == null)
              mVexs[p1].firstEdge = node1;
            else
                linkLast(mVexs[p1].firstEdge, node1);
            // 初始化node2
            ENode node2 = new ENode();
            node2.ivex = p1;
            node2.weight = weight;
            // 将node2链接到"p2所在链表的末尾"
            if(mVexs[p2].firstEdge == null)
              mVexs[p2].firstEdge = node2;
            else
                linkLast(mVexs[p2].firstEdge, node2);
        }
    }

    /* * 将node节点链接到list的最后 */
    private void linkLast(ENode list, ENode node) {
        ENode p = list;

        while(p.nextEdge!=null)
            p = p.nextEdge;
        p.nextEdge = node;
    }

    /* * 返回ch位置 */
    private int getPosition(char ch) {
        for(int i=0; i<mVexs.length; i++)
            if(mVexs[i].data==ch)
                return i;
        return -1;
    }

    /* * 读取一个输入字符 */
    private char readChar() {
        char ch='0';

        do {
            try {
                ch = (char)System.in.read();
            } catch (IOException e) {
                e.printStackTrace();
            }
        } while(!((ch>='a'&&ch<='z') || (ch>='A'&&ch<='Z')));

        return ch;
    }

    /* * 读取一个输入字符 */
    private int readInt() {
        Scanner scanner = new Scanner(System.in);
        return scanner.nextInt();
    }

    /* * 深度优先搜索遍历图的递归实现 */
    private void DFS(int i, boolean[] visited) {
        ENode node;

        visited[i] = true;
        System.out.printf("%c ", mVexs[i].data);
        node = mVexs[i].firstEdge;
        while (node != null) {
            if (!visited[node.ivex])
                DFS(node.ivex, visited);
            node = node.nextEdge;
        }
    }

    /* * 深度优先搜索遍历图 */
    public void DFS() {
        boolean[] visited = new boolean[mVexs.length];       // 顶点访问标记

        // 初始化所有顶点都没有被访问
        for (int i = 0; i < mVexs.length; i++)
            visited[i] = false;

        System.out.printf("DFS: ");
        for (int i = 0; i < mVexs.length; i++) {
            if (!visited[i])
                DFS(i, visited);
        }
        System.out.printf("\n");
    }

    /* * 广度优先搜索(类似于树的层次遍历) */
    public void BFS() {
        int head = 0;
        int rear = 0;
        int[] queue = new int[mVexs.length];            // 辅组队列
        boolean[] visited = new boolean[mVexs.length];  // 顶点访问标记

        for (int i = 0; i < mVexs.length; i++)
            visited[i] = false;

        System.out.printf("BFS: ");
        for (int i = 0; i < mVexs.length; i++) {
            if (!visited[i]) {
                visited[i] = true;
                System.out.printf("%c ", mVexs[i].data);
                queue[rear++] = i;  // 入队列
            }

            while (head != rear) {
                int j = queue[head++];  // 出队列
                ENode node = mVexs[j].firstEdge;
                while (node != null) {
                    int k = node.ivex;
                    if (!visited[k])
                    {
                        visited[k] = true;
                        System.out.printf("%c ", mVexs[k].data);
                        queue[rear++] = k;
                    }
                    node = node.nextEdge;
                }
            }
        }
        System.out.printf("\n");
    }

    /* * 打印矩阵队列图 */
    public void print() {
        System.out.printf("List Graph:\n");
        for (int i = 0; i < mVexs.length; i++) {
            System.out.printf("%d(%c): ", i, mVexs[i].data);
            ENode node = mVexs[i].firstEdge;
            while (node != null) {
                System.out.printf("%d(%c) ", node.ivex, mVexs[node.ivex].data);
                node = node.nextEdge;
            }
            System.out.printf("\n");
        }
    }

    /* * 获取边<start, end>的权值;若start和end不是连通的,则返回无穷大。 */
    private int getWeight(int start, int end) {

        if (start==end)
            return 0;

        ENode node = mVexs[start].firstEdge;
        while (node!=null) {
            if (end==node.ivex)
                return node.weight;
            node = node.nextEdge;
        }

        return INF;
    }

    /* * prim最小生成树 * * 参数说明: * start -- 从图中的第start个元素开始,生成最小树 */
    public void prim(int start) {
        int min,i,j,k,m,n,tmp,sum;
        int num = mVexs.length;
        int index=0;                   // prim最小树的索引,即prims数组的索引
        char[] prims = new char[num];  // prim最小树的结果数组
        int[] weights = new int[num];  // 顶点间边的权值

        // prim最小生成树中第一个数是"图中第start个顶点",因为是从start开始的。
        prims[index++] = mVexs[start].data;

        // 初始化"顶点的权值数组",
        // 将每个顶点的权值初始化为"第start个顶点"到"该顶点"的权值。
        for (i = 0; i < num; i++ )
            weights[i] = getWeight(start, i);

        for (i = 0; i < num; i++) {
            // 由于从start开始的,因此不需要再对第start个顶点进行处理。
            if(start == i)
                continue;

            j = 0;
            k = 0;
            min = INF;
            // 在未被加入到最小生成树的顶点中,找出权值最小的顶点。
            while (j < num) {
                // 若weights[j]=0,意味着"第j个节点已经被排序过"(或者说已经加入了最小生成树中)。
                if (weights[j] != 0 && weights[j] < min) {
                    min = weights[j];
                    k = j;
                }
                j++;
            }

            // 经过上面的处理后,在未被加入到最小生成树的顶点中,权值最小的顶点是第k个顶点。
            // 将第k个顶点加入到最小生成树的结果数组中
            prims[index++] = mVexs[k].data;
            // 将"第k个顶点的权值"标记为0,意味着第k个顶点已经排序过了(或者说已经加入了最小树结果中)。
            weights[k] = 0;
            // 当第k个顶点被加入到最小生成树的结果数组中之后,更新其它顶点的权值。
            for (j = 0 ; j < num; j++) {
                // 获取第k个顶点到第j个顶点的权值
                tmp = getWeight(k, j);
                // 当第j个节点没有被处理,并且需要更新时才被更新。
                if (weights[j] != 0 && tmp < weights[j])
                    weights[j] = tmp;
            }
        }

        // 计算最小生成树的权值
        sum = 0;
        for (i = 1; i < index; i++) {
            min = INF;
            // 获取prims[i]在矩阵表中的位置
            n = getPosition(prims[i]);
            // 在vexs[0...i]中,找出到j的权值最小的顶点。
            for (j = 0; j < i; j++) {
                m = getPosition(prims[j]);
                tmp = getWeight(m, n);
                if (tmp < min)
                    min = tmp;
            }
            sum += min;
        }
        // 打印最小生成树
        System.out.printf("PRIM(%c)=%d: ", mVexs[start].data, sum);
        for (i = 0; i < index; i++)
            System.out.printf("%c ", prims[i]);
        System.out.printf("\n");
    }

    /* * 克鲁斯卡尔(Kruskal)最小生成树 */
    public void kruskal() {
        int index = 0;                      // rets数组的索引
        int[] vends = new int[mEdgNum];     // 用于保存"已有最小生成树"中每个顶点在该最小树中的终点。
        EData[] rets = new EData[mEdgNum];  // 结果数组,保存kruskal最小生成树的边
        EData[] edges;                      // 图对应的所有边

        // 获取"图中所有的边"
        edges = getEdges();
        // 将边按照"权"的大小进行排序(从小到大)
        sortEdges(edges, mEdgNum);

        for (int i=0; i<mEdgNum; i++) {
            int p1 = getPosition(edges[i].start);      // 获取第i条边的"起点"的序号
            int p2 = getPosition(edges[i].end);        // 获取第i条边的"终点"的序号

            int m = getEnd(vends, p1);                 // 获取p1在"已有的最小生成树"中的终点
            int n = getEnd(vends, p2);                 // 获取p2在"已有的最小生成树"中的终点
            // 如果m!=n,意味着"边i"与"已经添加到最小生成树中的顶点"没有形成环路
            if (m != n) {
                vends[m] = n;                       // 设置m在"已有的最小生成树"中的终点为n
                rets[index++] = edges[i];           // 保存结果
            }
        }

        // 统计并打印"kruskal最小生成树"的信息
        int length = 0;
        for (int i = 0; i < index; i++)
            length += rets[i].weight;
        System.out.printf("Kruskal=%d: ", length);
        for (int i = 0; i < index; i++)
            System.out.printf("(%c,%c) ", rets[i].start, rets[i].end);
        System.out.printf("\n");
    }

    /* * 获取图中的边 */
    private EData[] getEdges() {
        int index=0;
        EData[] edges;

        edges = new EData[mEdgNum];
        for (int i=0; i < mVexs.length; i++) {

            ENode node = mVexs[i].firstEdge;
            while (node != null) {
                if (node.ivex > i) {
                    edges[index++] = new EData(mVexs[i].data, mVexs[node.ivex].data, node.weight);
                }
                node = node.nextEdge;
            }
        }

        return edges;
    }

    /* * 对边按照权值大小进行排序(由小到大) */
    private void sortEdges(EData[] edges, int elen) {

        for (int i=0; i<elen; i++) {
            for (int j=i+1; j<elen; j++) {

                if (edges[i].weight > edges[j].weight) {
                    // 交换"边i"和"边j"
                    EData tmp = edges[i];
                    edges[i] = edges[j];
                    edges[j] = tmp;
                }
            }
        }
    }

    /* * 获取i的终点 */
    private int getEnd(int[] vends, int i) {
        while (vends[i] != 0)
            i = vends[i];
        return i;
    }

    // 边的结构体
    private static class EData {
        char start; // 边的起点
        char end;   // 边的终点
        int weight; // 边的权重

        public EData(char start, char end, int weight) {
            this.start = start;
            this.end = end;
            this.weight = weight;
        }
    };

    public static void main(String[] args) {
        char[] vexs = {'A', 'B', 'C', 'D', 'E', 'F', 'G'};
        EData[] edges = {
                   // 起点 终点 权
            new EData('A', 'B', 12), 
            new EData('A', 'F', 16), 
            new EData('A', 'G', 14), 
            new EData('B', 'C', 10), 
            new EData('B', 'F',  7), 
            new EData('C', 'D',  3), 
            new EData('C', 'E',  5), 
            new EData('C', 'F',  6), 
            new EData('D', 'E',  4), 
            new EData('E', 'F',  2), 
            new EData('E', 'G',  8), 
            new EData('F', 'G',  9), 
        };
        ListUDG pG;

        // 自定义"图"(输入矩阵队列)
        //pG = new ListUDG();
        // 采用已有的"图"
        pG = new ListUDG(vexs, edges);

        //pG.print(); // 打印图
        //pG.DFS(); // 深度优先遍历
        //pG.BFS(); // 广度优先遍历
        //pG.prim(0); // prim算法生成最小生成树

        pG.kruskal();   // Kruskal算法生成最小生成树
    }
}

转载自:Kruskal算法(三)之 Java详解

你可能感兴趣的:(Kruskal算法 之 Java详解)