Apache Kafka?Follower???Leader????

重要名词解释: 

log end offset (logEndOffset),表示log中最后的message的offst位置.
high watermark (HW),表示Partition各个replicas数据间同步且一致的offset位置,即表示allreplicas已经commit位置,每个Broker缓存中维护此信息,并不断更新。

 

 

Kafka中replication复制数据

Kafka的复制机制既不是完全的同步复制,也不是单纯的异步复制。完全同步复制要求All Alive Follower都复制完,这条消息才会被认为commit,这种复制方式极大的影响了吞吐率。而异步复制方式下,Follower异步的从Leader复制数据,数据只要被Leader写入log就被认为已经commit,这种情况下如果Follower都复制完都落后于Leader,而如果Leader突然宕机,则会丢失数据。而Kafka的这种使用ISR的方式则很好的均衡了确保数据不丢失以及吞吐率。Follower可以批量的从Leader复制数据,而且Leader充分利用磁盘顺序读以及send file(zero copy)机制,这样极大的提高复制性能,内部批量写磁盘,大幅减少了Follower与Leader的消息量差。

 

优点

 

  • 性能高,吞吐量大。
  • 降低了系统和磁盘开销,Leader充分利用磁盘顺序读以及send file(zero copy)机制。
  • 降低Leader与Follower之间网络开销和交互次数。

 

缺点

 

  • 有可能会占用大量网络带宽(例如本来集群很大而且数据量很多,后来新增Broker节点需要迁移数据),甚至堵塞网络,需要有流控机制,否则会影响线上服务。
  • 因为Follower是批量拉取Leader消息,如果设置为保证所有replicas commit,才返回Ack给生产者会存在抖动现象,Follow拉取Leader修改HW,当HW与当次生产者请求logEndOffset的offst一致时,客户端等待时间会拉长。

 

kafka集群副本分布原理分析

Kafka中partition replication之间同步数据,从partition的leader复制数据到follower只需要一个线程(ReplicaFetcherThread),实际上复制是follower(一个follower相当于consumer)主动从leader批量拉取消息的,这极大提高了吞吐量,从中可以看出无处不显示Kafka高吞吐量设计思想。

这是一个异步复制过程,follow从leader批量拉取消息进行同步数据

Kafka中partition replica复制机制:

Kafka中每个Broker启动时都会创建一个副本管理服务(ReplicaManager),该服务负责维护ReplicaFetcherThread与其他Broker链路连接关系,该Broker中存在多少Follower的partitions对应leader partitions分布在不同的Broker上,有多少Broker就会创建相同数量的ReplicaFetcherThread线程同步对应partition数据,Kafka中partition间复制数据是由follower(扮演consumer角色)主动向leader获取消息,follower每次读取消息都会更新HW状态。每当Follower的partitions发生变更影响leader所在Broker变化时,ReplicaManager就会新建或销毁相应的ReplicaFetcherThread。

 

Kafka Broker中follower partition与ReplicaFetcherThread对应关系

partition三副本情况:

partition两副本情况:

 

Kafka中partitions数据一致性:

Kafka中Producer发送消息到Broker,Broker有三种返回方式,分别为noack、leader commit成功就ack、leader和follower同时commit成功才返回ack。第三种方式是数据强一致性。

 

如何保证数据强一致性?

当Producer发送消息到leader partition所在Broker时,首先保证leader commit消息成功,然后创建一个“生产者延迟请求任务”,并判断当前partiton的HW是否大于等于logEndOffset,如果满足条件即表示本次Producer请求partition replicas之间数据已经一致,立即向Producer返回Ack。否则待Follower批量拉取Leader的partition消息时,同时更新Leader ISR中HW,然后检查是否满足上述条件,如果满足向Producer返回Ack。

你可能感兴趣的:(Apache Kafka?Follower???Leader????)