CSU 1781 NBUT - 1643 阶乘除法

题目:

Description

输入两个正整数 n, m,输出 n!/m!,其中阶乘定义为 n!= 1*2*3*...*n (n>=1)。 比如,若 n=6, m=3,则n!/m!=6!/3!=720/6=120

是不是很简单?现在让我们把问题反过来:输入 k=n!/m!,找到这样的整数二元组(n,m) (n>m>=1)

如果答案不唯一,应该尽量小。比如,若 k=120,输出应该是 n=5m=1,而不是 n=6m=3,因为 5!/1!=6!/3!=120,而5<6

Input

输入包含不超过 100 组数据。每组数据包含一个整数 k (1<=k<=10^9)。

Output

对于每组数据,输出两个正整数 n 和 m。无解输出"Impossible",多解时应让 n 尽量小。

Sample Input

120
1
210

Sample Output

Case 1: 5 1
Case 2: Impossible
Case 3: 7 4

这个题目,我加了一个数组list,记录了从0到11的阶乘。

用这个可以减少一些运算,因为如果k=n!/m!,那么一定有(n-m)! | k

代码:

#include<iostream>
#include<stdio.h>
using namespace std;

int list[12] = { 1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800, 39916800 };

bool ok(int n, int k,int l)
{
	long long r = l;
	for (int i = 1; i < k; i++)
	{
		r *= l + i;
		if (r>n)return false;
	}
	return true;
}

int f(int n, int k)
{
	if (n%list[k])return -1;
	long long low = 2, high = n / 2;
	while (low < high-1)
	{
		int mid = (low + high) / 2;
		if (ok(n, k, mid))low = mid;
		else high = mid;
	}
	int r = low;
	for (int i = 1; i < k; i++)r *= low + i;
	if (r == n)return low;
	return -1;
}

int main()
{
	int cas = 1;
	int n;
	while (scanf("%d",&n)!=EOF)
	{
		cout << "Case " << cas++ << ": ";
		if (n == 1)cout << "Impossible";
		else
		{
			int r = 1234567890, key = 0;
			for (int k = 2; k <= 11; k++)
			{
				int t = f(n, k);
				if (t>0 && r > t)
				{
					r = t;
					key = k;
				}
			}
			if (r < 1234567890)cout << key + r - 1 << " " << r - 1;
			else cout << n << " " << n - 1;
		}
		cout << endl;
	}
	return 0;
}

今天又遇到这个题目了,只好又写了一遍。

代码:

#include<iostream>
using namespace std;

int fac[13] = { 0,1,2,6,24,120,720,5040,40320,362880,3628800,39916800,479001600 };
int n, m, k;

bool ok(int low, int len)
{
	long long pi = 1;
	for (int i = 0; i < len; i++)
	{
		pi *= low + i;
		if (pi > k)return false;
	}
	return true;
}

void f()
{
	n = k;
	m = k - 1;
	for (int i = 2; i <= 12; i++)
	{
		if (k%fac[i])return;
		int low = 2, high = k, mid;
		while (low < high-1)
		{
			mid = (low + high) / 2;
			if (ok(mid, i))low = mid;
			else high = mid;
		}
		int pi = 1;
		for (int j = 0; j < i; j++)pi *= low + j;
		if (pi == k)
		{
			n = low + i - 1;
			m = low - 1;
		}
	}
}

int main()
{
	int cas = 1;
	while (cin >> k)
	{
		cout << "Case " << cas++ << ": ";
		if (k == 1)
		{
			cout << "Impossible" << endl;
			continue;
		}
		f();
		cout << n << " " << m << endl;
	}
	return 0;
}

你可能感兴趣的:(CSU 1781 NBUT - 1643 阶乘除法)