RtspServer的分析!
RtspServer类:继承自Medium,主要用于构建一个Rtsp服务器,同时该类在内部构建了一个RTSPClientSession类,用于处理单独的客户会话。
下面是一个RtspServer整体的介绍
1.RtspClient和RtspServer都一样,首先创建任务调度器和交互环境
TaskScheduler* scheduler = BasicTaskScheduler::createNew(); UsageEnvironment *env = BasicUsageEnvironment::createNew(*scheduler);
RTSPServer* rtspServer = RTSPServer::createNew(*env, 8554, NULL);//8554是端口号
{ char const* streamName = "mpeg4ESVideoTest";?//流的名称 比如rtsp://1.1.1.1/streamName char const* inputFileName = "test.m4e"; //从文件里读取流 //创建会话 ServerMediaSession* sms = ServerMediaSession::createNew(*env, streamName, streamName, descriptionString); sms->addSubsession(MPEG4VideoFileServerMediaSubsession ::createNew(*env, inputFileName, reuseFirstSource)); rtspServer->addServerMediaSession(sms); announceStream(rtspServer, sms, streamName, inputFileName); }
static void announceStream(RTSPServer* rtspServer, ServerMediaSession* sms, char const* streamName, char const* inputFileName) { char* url = rtspServer->rtspURL(sms); UsageEnvironment& env = rtspServer->envir(); env << "\n\"" << streamName << "\" stream, from the file \"" << inputFileName << "\"\n"; env << "Play this stream using the URL \"" << url << "\"\n"; delete[] url; }
4.
// Also, attempt to create a HTTP server for RTSP-over-HTTP tunneling. // Try first with the default HTTP port (80), and then with the alternative HTTP // port numbers (8000 and 8080). if (rtspServer->setUpTunnelingOverHTTP(80) || rtspServer->setUpTunnelingOverHTTP(8000) || rtspServer->setUpTunnelingOverHTTP(8080)) { *env << "\n(We use port " << rtspServer->httpServerPortNum() << " for optional RTSP-over-HTTP tunneling.)\n"; } else { *env << "\n(RTSP-over-HTTP tunneling is not available.)\n"; }
env->taskScheduler().doEventLoop(); // does not return
下面分析doEventLoop实现的细节:
void BasicTaskScheduler0::doEventLoop(char* watchVariable) { // Repeatedly loop, handling readble sockets and timed events: while (1) { if (watchVariable != NULL && *watchVariable != 0) break; SingleStep(); } }
void BasicTaskScheduler::SingleStep(unsigned maxDelayTime) { fd_set readSet = fReadSet; // make a copy for this select() call fd_set writeSet = fWriteSet; // ditto fd_set exceptionSet = fExceptionSet; // ditto //计算select socket们时的超时时间 DelayInterval const& timeToDelay = fDelayQueue.timeToNextAlarm(); struct timeval tv_timeToDelay; tv_timeToDelay.tv_sec = timeToDelay.seconds(); tv_timeToDelay.tv_usec = timeToDelay.useconds(); // Very large "tv_sec" values cause select() to fail. // Don't make it any larger than 1 million seconds (11.5 days) const long MAX_TV_SEC = MILLION; if (tv_timeToDelay.tv_sec > MAX_TV_SEC) { tv_timeToDelay.tv_sec = MAX_TV_SEC; } // Also check our "maxDelayTime" parameter (if it's > 0): if (maxDelayTime > 0 && (tv_timeToDelay.tv_sec > (long)maxDelayTime/MILLION || (tv_timeToDelay.tv_sec == (long)maxDelayTime/MILLION && tv_timeToDelay.tv_usec > (long)maxDelayTime%MILLION))) { tv_timeToDelay.tv_sec = maxDelayTime/MILLION; tv_timeToDelay.tv_usec = maxDelayTime%MILLION; } int selectResult = select(fMaxNumSockets, &readSet, &writeSet, &exceptionSet, &tv_timeToDelay); if (selectResult < 0) { #if defined(__WIN32__) || defined(_WIN32) int err = WSAGetLastError(); // For some unknown reason, select() in Windoze sometimes fails with WSAEINVAL if // it was called with no entries set in "readSet". If this happens, ignore it: if (err == WSAEINVAL && readSet.fd_count == 0) { err = EINTR; // To stop this from happening again, create a dummy socket: int dummySocketNum = socket(AF_INET, SOCK_DGRAM, 0); FD_SET((unsigned)dummySocketNum, &fReadSet); } if (err != EINTR) { #else if (errno != EINTR && errno != EAGAIN) { #endif // Unexpected error - treat this as fatal: #if !defined(_WIN32_WCE) perror("BasicTaskScheduler::SingleStep(): select() fails"); // Because this failure is often "Bad file descriptor" - which is caused by an invalid socket number (i.e., a socket number // that had already been closed) being used in "select()" - we print out the sockets that were being used in "select()", // to assist in debugging: fprintf(stderr, "socket numbers used in the select() call:"); for (int i = 0; i < 10000; ++i) { if (FD_ISSET(i, &fReadSet) || FD_ISSET(i, &fWriteSet) || FD_ISSET(i, &fExceptionSet)) { fprintf(stderr, " %d(", i); if (FD_ISSET(i, &fReadSet)) fprintf(stderr, "r"); if (FD_ISSET(i, &fWriteSet)) fprintf(stderr, "w"); if (FD_ISSET(i, &fExceptionSet)) fprintf(stderr, "e"); fprintf(stderr, ")"); } } fprintf(stderr, "\n"); #endif internalError(); } } // Call the handler function for one readable socket: HandlerIterator iter(*fHandlers); HandlerDescriptor* handler; // To ensure forward progress through the handlers, begin past the last // socket number that we handled: if (fLastHandledSocketNum >= 0) { //找到上次执行的socket handler的下一个 while ((handler = iter.next()) != NULL) { if (handler->socketNum == fLastHandledSocketNum) break; } if (handler == NULL) { fLastHandledSocketNum = -1; iter.reset(); // start from the beginning instead } } //从找到的handler开始,找一个可以执行的handler,不论其状态是可读,可写,还是出错,执行之 while ((handler = iter.next()) != NULL) { int sock = handler->socketNum; // alias int resultConditionSet = 0; if (FD_ISSET(sock, &readSet) && FD_ISSET(sock, &fReadSet)/*sanity check*/) resultConditionSet |= SOCKET_READABLE; if (FD_ISSET(sock, &writeSet) && FD_ISSET(sock, &fWriteSet)/*sanity check*/) resultConditionSet |= SOCKET_WRITABLE; if (FD_ISSET(sock, &exceptionSet) && FD_ISSET(sock, &fExceptionSet)/*sanity check*/) resultConditionSet |= SOCKET_EXCEPTION; if ((resultConditionSet&handler->conditionSet) != 0 && handler->handlerProc != NULL) { fLastHandledSocketNum = sock; // Note: we set "fLastHandledSocketNum" before calling the handler, // in case the handler calls "doEventLoop()" reentrantly. (*handler->handlerProc)(handler->clientData, resultConditionSet); break; } } //如果寻找完了依然没有执行任何handle,则从头再找 if (handler == NULL && fLastHandledSocketNum >= 0) { // We didn't call a handler, but we didn't get to check all of them, // so try again from the beginning: iter.reset(); while ((handler = iter.next()) != NULL) { int sock = handler->socketNum; // alias int resultConditionSet = 0; if (FD_ISSET(sock, &readSet) && FD_ISSET(sock, &fReadSet)/*sanity check*/) resultConditionSet |= SOCKET_READABLE; if (FD_ISSET(sock, &writeSet) && FD_ISSET(sock, &fWriteSet)/*sanity check*/) resultConditionSet |= SOCKET_WRITABLE; if (FD_ISSET(sock, &exceptionSet) && FD_ISSET(sock, &fExceptionSet)/*sanity check*/) resultConditionSet |= SOCKET_EXCEPTION; if ((resultConditionSet&handler->conditionSet) != 0 && handler->handlerProc != NULL) { fLastHandledSocketNum = sock; // Note: we set "fLastHandledSocketNum" before calling the handler, // in case the handler calls "doEventLoop()" reentrantly. (*handler->handlerProc)(handler->clientData, resultConditionSet); break; } } //依然没有找到可执行的handler if (handler == NULL) fLastHandledSocketNum = -1;//because we didn't call a handler } //响应事件 // Also handle any newly-triggered event (Note that we do this *after* calling a socket handler, // in case the triggered event handler modifies The set of readable sockets.) if (fTriggersAwaitingHandling != 0) { if (fTriggersAwaitingHandling == fLastUsedTriggerMask) { // Common-case optimization for a single event trigger: fTriggersAwaitingHandling = 0; if (fTriggeredEventHandlers[fLastUsedTriggerNum] != NULL) { //执行一个事件处理函数 (*fTriggeredEventHandlers[fLastUsedTriggerNum])(fTriggeredEventClientDatas[fLastUsedTriggerNum]); } } else { // Look for an event trigger that needs handling (making sure that we make forward progress through all possible triggers): unsigned i = fLastUsedTriggerNum; EventTriggerId mask = fLastUsedTriggerMask; do { i = (i+1)%MAX_NUM_EVENT_TRIGGERS; mask >>= 1; if (mask == 0) mask = 0x80000000; if ((fTriggersAwaitingHandling&mask) != 0) { //执行一个事件响应 fTriggersAwaitingHandling &=~ mask; if (fTriggeredEventHandlers[i] != NULL) { (*fTriggeredEventHandlers[i])(fTriggeredEventClientDatas[i]); } fLastUsedTriggerMask = mask; fLastUsedTriggerNum = i; break; } } while (i != fLastUsedTriggerNum); } } //执行一个最迫切的延迟任务 // Also handle any delayed event that may have come due. fDelayQueue.handleAlarm(); }由上面代码可知,SingleStep()执行以下四步:
1为所有需要操作的socket 执行select 。
2找出第一个应执行的socket 任务(handler) 并执行之。
3找到第一个应响应的事件,并执行之。
4找到第一个应执行的延迟任务并执行之。