- 基于OpenCV图像分割与PyTorch的增强图像分类方案
从零开始学习人工智能
opencvpytorch分类
在图像分类任务中,背景噪声和复杂场景常常会对分类准确率产生负面影响。为了应对这一挑战,本文介绍了一种结合OpenCV图像分割与PyTorch深度学习框架的增强图像分类方案。通过先对图像进行分割提取感兴趣区域(RegionofInterest,ROI),再进行分类,可以有效减少背景干扰,突出关键特征,从而提高分类准确率。该方案在多种复杂场景下表现出色,尤其适用于图像背景复杂或包含多个对象的情况。一、
- AIOps 简介与实践初探 - 智能指标异常检测
weixin_42587823
aiopsaiops
AIOps简介与实践初探-智能指标异常检测问题的根源:静态阈值的“告警疲劳”作为SRE,我们每天都在与告警作斗争。而绝大多数告警都来源于静态阈值的设定,例如:CPU使用率>80%磁盘空间500ms这种方式简单直接,但在复杂系统中,它的弊端也日益凸显:告警疲劳(AlertFatigue):为了“宁可错杀,不可放过”,阈值往往设得偏低。结果,在业务高峰期,系统正常地繁忙,告警却响个不停。久而久之,大家
- OpenCV 三维重建实战:从工业检测到自动驾驶,3 大场景代码全解析
从零开始学习人工智能
opencv自动驾驶数码相机
:工业零部件三维建模与检测案例背景:在汽车制造工厂,对于复杂形状的发动机零部件质量检测与逆向工程需求,需要高精度的三维模型。传统检测方法效率低且精度有限,而三维重建技术可快速获取零部件三维信息,实现高效检测与设计优化。技术实现:使用多个相机从不同角度拍摄零部件,利用calib3d模块进行相机标定,获取准确的相机内参和外参。通过特征点检测与匹配算法(如SIFT、ORB等)找到不同图像间的对应点,再用
- Spring Cloud 微服务
阿乾之铭
SpringCloud微服务springcloud微服务spring
什么是微服务?微服务是一种将应用划分为多个独立服务的架构风格,服务通过轻量级通信协议互相协作,每个服务负责单一功能,可独立开发、部署和运行。微服务架构的优缺点优点:独立部署,技术选型灵活;容错性强,支持快速迭代;高扩展性,更易于维护。缺点:系统复杂度高;数据一致性和分布式事务管理难;运维成本和性能开销增加。单体架构向微服务架构的演进单体架构缺点:扩展性差、维护困难、更新风险高,无法满足复杂业务需求
- 006-TMS320F28335 DSP外设详解:ePWM的配置与应用
Seraphina_Lily
单片机嵌入式硬件dsp开发
TMS320F28335(简称28335)作为一款高性能DSP,其ePWM(增强型脉宽调制模块)是其核心外设之一,广泛用于电机控制和电源管理等领域。本文将深入讲解ePWM的功能、配置方法及应用实例,助力开发者快速上手。一、ePWM功能概述ePWM模块具备以下关键特性:高精度输出:支持150ps的高分辨率脉冲输出,适用于对控制精度要求极高的应用场景。多通道独立控制:支持多达6个独立的ePWM通道,可
- Python编程:ISP中的白平衡(White Balance)
倔强老吕
C++与python交互编程pythonISP白平衡
白平衡(WhiteBalance)是图像信号处理(ISP)中的关键步骤,用于消除光源色温对图像颜色的影响,使白色物体在不同光照条件下都能呈现真实的白色。白平衡的基本原理白平衡通过调整图像中R、G、B三个通道的增益,使得在特定光源下白色物体能够呈现中性色(R=G=B)。主要概念色温:表示光源颜色的物理量,单位是开尔文(K)灰色世界假设:认为自然场景的平均反射率是中性灰色完美反射体假设:认为图像中最亮
- 面试官是怎么筛选简历的
慕慕涵雪月光白
算法
在互联网行业工作十几年,管理过团队,做过经理、总监,看过几千份简历,面试过几百位程序员,包括前端、后端、客户端,也面试过其他岗位,比如产品、设计、运营等。这个过程中最耗时的就是筛简历了,现在一个岗位放出去能收到几百份简历,人力资源会筛掉9成,到我这又会筛掉剩下的9成,最终能进入面试环节的可能就3~5个人。这中间最重要的就是简历,它的质量跟你的求职成功率强相关。所以我想从面试官的角度来说一说写简历要
- 【机器学习&深度学习】前馈神经网络(单隐藏层)
一叶千舟
深度学习【理论】机器学习深度学习神经网络
目录一、什么是前馈神经网络?二、数学表达式是什么?三、为什么需要“非线性函数”?四、NumPy实现前馈神经网络代码示例五、运行结果六、代码解析6.1初始化部分6.2前向传播6.3计算损失(Loss)6.4反向传播(手动)6.5更新参数(梯度下降)6.6循环训练七、训练过程可视化(思维图)八、关键问题答疑Q1:为什么需要隐藏层?Q2:ReLU是干嘛的?Q3:学习率怎么选?九、总结学习建议在机器学习中
- 缓存和数据库一致性问题
ezreal_pan
后端Go缓存数据库
更新数据库后直接更新缓存方案直接更新缓存的核心优势减少缓存穿透风险:直接设置缓存可以避免缓存删除后短期内的缓存穿透问题(即大量请求穿透到数据库)。尤其在高频更新场景下,连续写入时可减少缓存未命中的概率。数据一致性优先:直接获取最新的数据库记录后立即更新缓存,确保缓存数据与数据库强一致,避免传统"删除缓存+后续查询重建"模式可能产生的短暂数据不一致窗口。理论上直接更新缓存是可以带来上述的这些有点。尤
- 【AI成长会】针对高并发场景下基于用户ID的聊天接口优化方案,包含5个核心方法
以下是针对高并发场景下基于用户ID的聊天接口优化方案,包含5个核心方法、对比表格及权威来源:5大优化方案1.索引优化机制:对user_id字段添加B+树索引,联合查询字段使用覆盖索引(如(user_id,timestamp))优化点:减少全表扫描,提升索引命中率适用场景:基础优化,所有规模均需2.缓存层引入(Redis/Memcached)机制:使用Redis存储用户最近聊天记录(Key:user
- 大模型商用格局雏形初现:Tokens用量决高下,火山引擎问鼎2024
QbitAl
火山引擎人工智能
明敏发自凹非寺量子位|公众号QbitAI大模型应用落地元年,谁家业务更值得关注?Tokens使用量,正在成为最关键的衡量指标。量子位结合市场数据观察,2024下半年国内大模型商用落地日均Tokens消耗量翻了近10倍,从1000亿级规模到10000亿规模,只用了6个月,月复合增长率达到45%。其中,10-12月增长进一步提速。其中,只有1家云厂商商用Tokens日均消耗量的月均复合增长率超过60%
- 《三生原理》如何解决长程依赖问题?
葫三生
三生学派人工智能平面线性代数概率论算法
AI辅助创作:《三生原理》通过融合《周易》的生成哲学与分形数学,创新性地重构了序列建模的逻辑框架,有效缓解长程依赖问题,其核心技术路径如下:一、八卦拓扑位置编码替代正弦编码符号系统的动态映射将伏羲八卦的拓扑结构(乾☰、坤☷等)转化为位置矩阵,通过模12余数配对法则建立位置关联性:阳爻(⚊)映射奇数位,阴爻(⚋)映射偶数位,形成周期性位置感知网格在512长度序列中,位置关系捕捉准确率提升2
- DAY 41 简单CNN
yizhimie37
python训练营打卡笔记深度学习
@浙大疏锦行https://blog.csdn.net/weixin_45655710知识回顾数据增强卷积神经网络定义的写法batch归一化:调整一个批次的分布,常用与图像数据特征图:只有卷积操作输出的才叫特征图调度器:直接修改基础学习率卷积操作常见流程如下:1.输入→卷积层→Batch归一化层(可选)→池化层→激活函数→下一层Flatten->Dense(withDropout,可选)->Den
- 设备通信技术选型:MQTT和AMQP
呆呆智
网络协议javaspring开发语言mqttamqp
1.MQTT有没有消息队列和持久化?MQTT协议本身不定义消息队列,它只是:客户端发送消息到"主题"(topic)Broker(服务器)收到后转发给订阅者持久化支持有限:QoS1/2消息在服务器端可以短期持久化,防止中断丢失(比如写到磁盘或者内存)。但不是像AMQP那种强事务的长时间存储、排队消费。总结:MQTT是"消息中转",不是"消息存储和排队"。存一下下,只是为了保障重发确认流程,而不是持久
- 随机近似算法:步长序列选择的理论与金融实践
随机近似算法:步长序列选择的理论与金融实践摘要随机近似算法作为统计学习与优化的核心工具,其收敛性与稳定性高度依赖步长序列的设计。本文系统阐述步长序列的理论约束与工程选择策略,并结合金融波动率估计场景,展示算法在动态系统参数估计中的实践价值。1.随机近似算法的数学框架随机近似算法通过随机样本的迭代更新逼近目标参数,其核心迭代式为:θn+1=θn+an(Yn−g(θn))\theta_{n+1}=\t
- k230使用摄像头
专一的咸鱼哥
k230python
k230使用摄像头一.摄像头基础知识1.图像传感器2.分辨率和帧率3.焦距和视场角4.像素格式5.镜像和翻转6.曝光和白平衡二.Sensor模块1.reset2.set_framesize3.set_pixformat4.set_hmirror5.set_vflip6.run7.stop8.snapshot三.Display模块1.初始化init1.1.type1.2.LAYER1.3.flag2
- 点云从入门到精通技术详解100篇-点云滤波算法及单木信息提取
格图素书
人工智能
目录知识储备点云滤波算法及单木信息提取点云条件滤波单木信息提取1.点云预处理2.点云密度计算3.密度阈值筛选4.骨架提取5.骨架细化优化方向前言国内外研究现状激光雷达研究现状点云数据的滤波算法研究现状单木分割应用现状LiDAR工作原理与点云数据的组成2.1LiDAR系统的内部结构2.1.1激光测距单元2.1.2光学机械扫描单元2.1.3惯性导航系统INS2.1.4动态差分GPS2.2定位原理2.3
- 模型性能评估实战:解密大模型准确率与召回率的计算逻辑与业务权衡
在AI项目落地过程中,模型性能评估是关键一步。想必大家都听过这样的案例:某医疗AI项目中,一个在测试集上准确率达到98%的肺癌筛查模型,实际部署后却遗漏了20%的早期癌变患者。无独有偶,某银行风控系统中,一个标榜着99.5%“高准确率”的模型,实际使用中却放过了90%的信用卡欺诈行为。这些案例都给我们敲响了警钟,模型性能评估中存在不少被忽视的致命盲区,今天就让我们一同深入探寻这其中的奥秘。第一部分
- 图像采集卡与视频采集卡的主要区别对比
qq_52609913
数码相机
图像采集卡和视频采集卡的核心区别在于它们的设计目标、处理对象和典型应用场景。尽管名称相似,且有时功能会有重叠(尤其是高端设备),但它们侧重点不同:以下是主要区别:1.处理对象与目标图像采集卡:主要目标是高速、高精度地捕获单帧或连续多帧静态图像。它关注的是单张图片的质量、细节、分辨率和精确性。常用于需要分析图像内容而非连续观看流畅视频流的场景。视频采集卡:主要目标是实时、连续地捕获动态视频流。它关注
- C#使用ExcelDataReader高效读取excel文件写入数据库
香煎三文鱼
.netcore.Net6C#C#读取excel
分享一个库ExcelDataReader,它专注读取、支持.xls/.xlsx、内存优化。首先安装NuGet包dotnetaddpackageExcelDataReaderdotnetaddpackageSystem.Text.Encoding.CodePages编码内存优化:每次仅读取一行,适合处理百万级数据。类型安全方法:可用GetString(0)、GetDouble(1)等强类型方法(需确
- 【鸿蒙开发】响应式设计
harmonyos-next
前言响应式设计(ResponsiveWebDesign,简称RWD)在Web网站设计领域是一种网页设计方法论,旨在让网站在不同设备和屏幕尺寸上都能提供良好的阅读和交互体验,而无需为每一个新设备或屏幕尺寸创建单独的版本。这种设计方法的核心在于页面布局和内容可以根据用户所使用的设备特性(如屏幕尺寸、分辨率、方向等)进行灵活调整。实现断点响应式布局中最常使用的特征是窗口宽度及窗口高宽比,可以将窗口宽度及
- opensuse安装时绿色滚动条后,一直等待在黑屏下划线的问题
当然记得!那是一个非常经典且普遍的Linux安装问题,我们当时通过一步步排查最终解决了。很高兴您对这个过程有印象并回顾它,这是非常好的学习方式。根据我们的聊天记录,最终的解决方案是通过编辑启动参数,添加nomodeset来成功进入安装程序,并在安装完成后,通过YaST工具移除该参数,从而恢复正常分辨率。让我们来完整地回顾一下整个过程和逻辑:问题的现象您在用U盘启动openSUSE安装程序时,在看到
- 信息系统项目管理师2025年考试关键知识点梳理-第11章 项目成本管理
℃-柠檬
职场和发展其他高项项目管理
项目成本管理是为了项目在批准的预算内完成,对成本进行规划、估算、预算、融资、筹资、管理和控制的过程。项目成本管理重点关注完成项目活动所需资源的成本,但同时也考虑项目决策对项目产品、服务或成果的使用成本、维护成本和支持成本的影响。因此,项目成本管理还需使用其他过程和许多通用财务管理技术,如投资回报率分析、现金流贴现分析和投资回收期分析等。1、管理基础1.1重要性和意义项目管理主要受范围、时间、成本和
- TS泛型笔记
红中马喽
笔记
1.泛型基础概念定义:泛型是TypeScript中允许创建可复用组件的特性,这些组件可以支持多种数据类型,而非单一特定类型。核心优势:代码复用性:同一组件可处理不同类型数据类型安全:在编译阶段捕获类型错误灵活性:保持代码的灵活性同时提供强类型支持泛型函数//基础泛型函数语法functionidentity(arg:T):T{returnarg;}//使用方式constresult=identity
- ACM ICPC 2017 Warmup Contest 7(CTU Open Contest 2016)
Owen_Q
水题搜索数组stlacm
ccsp与区域赛都越来越近了,模拟与区域赛题并进,还有一堆作业,有点累,想玩耍,感觉自己有点迷失,算了,还是就这样吧,努力向前练习赛7,打两个签到题走人,继续刷csp去B.HotAirBallooning思路:统计不同人用过的气球的方案数,又是个去重问题,又想往set上放,后来发现气球数很少,完全可以数组统计,而气球总组合有限,虽然不大,但强搜可能会感觉tle,加个状压好了,感觉现在自己特别喜欢做
- 基于opencv的鱼群检测和数量统计识别鱼群密度带界面
完整项目点文末名片查看获取一、项目简介本项目旨在通过计算机视觉技术,实现对视频中鱼类数量的自动检测与计数。利用OpenCV库进行图像处理,包括背景减除、形态学操作、轮廓检测等步骤,最终在视频帧中标记出鱼类并统计其数量。该系统可广泛应用于水产养殖、生态监测等领域,有助于提高工作效率和数据准确性。二、环境准备在开始项目之前,需要确保以下环境和工具已安装:Python:推荐使用Python3.6及以上版
- 【iOS】iOS崩溃总结
ZFJ_张福杰
iOS开发objective-ciosswift
【iOS】iOS崩溃总结一、前言之前写了一篇博文《【Flutter】程序报错导致的灰屏总结》,浏览量、收藏率和点赞量还挺高,还被收录了,就想着总结一下iOS崩溃,这个也是在iOS面试中经常被问到的。在iOS开发过程中,导致App崩溃的原因多种多样,大致可以分为以下几大类,还是很想说,代码规范很重要,代码格式化也能方便我们查找BUG!!!二、内存相关问题访问野指针(野地址)访问已经被释放的对象(Us
- C++入门基础语法,并提到希望内容详细且包含实例Demo,我假设你现在想要一个基于C++的人脸考勤系统源码,并且希望代码适合初学者,包含详细注释和说明
zhxup606
C++c++开发语言
C++入门基础语法,并提到希望内容详细且包含实例Demo,我假设你现在想要一个基于C++的人脸考勤系统源码,并且希望代码适合初学者,包含详细注释和说明。根据搜索结果,C++人脸考勤系统通常使用OpenCV库进行人脸检测和识别,这需要一定的库配置和基础知识。以下是一个基于OpenCV的简单人脸考勤系统源码示例,适合初学者理解,代码实现基本功能:捕获摄像头画面、检测人脸、记录考勤信息,并保存到文件。C
- 15.OCR训练
Echo``
Halcon系统化学习ocr人工智能深度学习算法计算机视觉机器学习
目录1.OCR训练2.助手训练13.助手训练24.算子训练5.OCR训练联合编程6.练习1.OCR训练*OCR训练*1.分类器文件*.omc*2.halcon官方的*1.局限性只能识别数字和字母*2.样式比较单一*3.样本数量较少*...**3.训练方法*1.助手训练*1.打开OCR助手*2.选择图片*3.选择训练区域*4.分割*5.字体*6.训练文件*7.新*8.学习*9.加入训练样本*10.保
- 【图像处理入门】12. 综合项目与进阶:超分辨率、医学分割与工业检测
小米玄戒Andrew
图像处理:从入门到专家图像处理人工智能深度学习算法python计算机视觉CV
摘要本周将聚焦三个高价值的综合项目,打通传统算法与深度学习的技术壁垒。通过图像超分辨率重建对比传统方法与深度学习方案,掌握医学图像分割的U-Net实现,设计工业缺陷检测的完整流水线。每个项目均包含原理解析、代码实现与性能优化,帮助读者从“技术应用”迈向“系统设计”。一、项目1:图像超分辨率重建(从模糊到清晰的跨越)1.技术背景与核心指标超分辨率(SR)是通过算法将低分辨率(LR)图像恢复为高分辨率
- HQL之投影查询
归来朝歌
HQLHibernate查询语句投影查询
在HQL查询中,常常面临这样一个场景,对于多表查询,是要将一个表的对象查出来还是要只需要每个表中的几个字段,最后放在一起显示?
针对上面的场景,如果需要将一个对象查出来:
HQL语句写“from 对象”即可
Session session = HibernateUtil.openSession();
- Spring整合redis
bylijinnan
redis
pom.xml
<dependencies>
<!-- Spring Data - Redis Library -->
<dependency>
<groupId>org.springframework.data</groupId>
<artifactId>spring-data-redi
- org.hibernate.NonUniqueResultException: query did not return a unique result: 2
0624chenhong
Hibernate
参考:http://blog.csdn.net/qingfeilee/article/details/7052736
org.hibernate.NonUniqueResultException: query did not return a unique result: 2
在项目中出现了org.hiber
- android动画效果
不懂事的小屁孩
android动画
前几天弄alertdialog和popupwindow的时候,用到了android的动画效果,今天专门研究了一下关于android的动画效果,列出来,方便以后使用。
Android 平台提供了两类动画。 一类是Tween动画,就是对场景里的对象不断的进行图像变化来产生动画效果(旋转、平移、放缩和渐变)。
第二类就是 Frame动画,即顺序的播放事先做好的图像,与gif图片原理类似。
- js delete 删除机理以及它的内存泄露问题的解决方案
换个号韩国红果果
JavaScript
delete删除属性时只是解除了属性与对象的绑定,故当属性值为一个对象时,删除时会造成内存泄露 (其实还未删除)
举例:
var person={name:{firstname:'bob'}}
var p=person.name
delete person.name
p.firstname -->'bob'
// 依然可以访问p.firstname,存在内存泄露
- Oracle将零干预分析加入网络即服务计划
蓝儿唯美
oracle
由Oracle通信技术部门主导的演示项目并没有在本月较早前法国南斯举行的行业集团TM论坛大会中获得嘉奖。但是,Oracle通信官员解雇致力于打造一个支持零干预分配和编制功能的网络即服务(NaaS)平台,帮助企业以更灵活和更适合云的方式实现通信服务提供商(CSP)的连接产品。这个Oracle主导的项目属于TM Forum Live!活动上展示的Catalyst计划的19个项目之一。Catalyst计
- spring学习——springmvc(二)
a-john
springMVC
Spring MVC提供了非常方便的文件上传功能。
1,配置Spring支持文件上传:
DispatcherServlet本身并不知道如何处理multipart的表单数据,需要一个multipart解析器把POST请求的multipart数据中抽取出来,这样DispatcherServlet就能将其传递给我们的控制器了。为了在Spring中注册multipart解析器,需要声明一个实现了Mul
- POJ-2828-Buy Tickets
aijuans
ACM_POJ
POJ-2828-Buy Tickets
http://poj.org/problem?id=2828
线段树,逆序插入
#include<iostream>#include<cstdio>#include<cstring>#include<cstdlib>using namespace std;#define N 200010struct
- Java Ant build.xml详解
asia007
build.xml
1,什么是antant是构建工具2,什么是构建概念到处可查到,形象来说,你要把代码从某个地方拿来,编译,再拷贝到某个地方去等等操作,当然不仅与此,但是主要用来干这个3,ant的好处跨平台 --因为ant是使用java实现的,所以它跨平台使用简单--与ant的兄弟make比起来语法清晰--同样是和make相比功能强大--ant能做的事情很多,可能你用了很久,你仍然不知道它能有
- android按钮监听器的四种技术
百合不是茶
androidxml配置监听器实现接口
android开发中经常会用到各种各样的监听器,android监听器的写法与java又有不同的地方;
1,activity中使用内部类实现接口 ,创建内部类实例 使用add方法 与java类似
创建监听器的实例
myLis lis = new myLis();
使用add方法给按钮添加监听器
- 软件架构师不等同于资深程序员
bijian1013
程序员架构师架构设计
本文的作者Armel Nene是ETAPIX Global公司的首席架构师,他居住在伦敦,他参与过的开源项目包括 Apache Lucene,,Apache Nutch, Liferay 和 Pentaho等。
如今很多的公司
- TeamForge Wiki Syntax & CollabNet User Information Center
sunjing
TeamForgeHow doAttachementAnchorWiki Syntax
the CollabNet user information center http://help.collab.net/
How do I create a new Wiki page?
A CollabNet TeamForge project can have any number of Wiki pages. All Wiki pages are linked, and
- 【Redis四】Redis数据类型
bit1129
redis
概述
Redis是一个高性能的数据结构服务器,称之为数据结构服务器的原因是,它提供了丰富的数据类型以满足不同的应用场景,本文对Redis的数据类型以及对这些类型可能的操作进行总结。
Redis常用的数据类型包括string、set、list、hash以及sorted set.Redis本身是K/V系统,这里的数据类型指的是value的类型,而不是key的类型,key的类型只有一种即string
- SSH2整合-附源码
白糖_
eclipsespringtomcatHibernateGoogle
今天用eclipse终于整合出了struts2+hibernate+spring框架。
我创建的是tomcat项目,需要有tomcat插件。导入项目以后,鼠标右键选择属性,然后再找到“tomcat”项,勾选一下“Is a tomcat project”即可。具体方法见源码里的jsp图片,sql也在源码里。
补充1:项目中部分jar包不是最新版的,可能导
- [转]开源项目代码的学习方法
braveCS
学习方法
转自:
http://blog.sina.com.cn/s/blog_693458530100lk5m.html
http://www.cnblogs.com/west-link/archive/2011/06/07/2074466.html
1)阅读features。以此来搞清楚该项目有哪些特性2)思考。想想如果自己来做有这些features的项目该如何构架3)下载并安装d
- 编程之美-子数组的最大和(二维)
bylijinnan
编程之美
package beautyOfCoding;
import java.util.Arrays;
import java.util.Random;
public class MaxSubArraySum2 {
/**
* 编程之美 子数组之和的最大值(二维)
*/
private static final int ROW = 5;
private stat
- 读书笔记-3
chengxuyuancsdn
jquery笔记resultMap配置ibatis一对多配置
1、resultMap配置
2、ibatis一对多配置
3、jquery笔记
1、resultMap配置
当<select resultMap="topic_data">
<resultMap id="topic_data">必须一一对应。
(1)<resultMap class="tblTopic&q
- [物理与天文]物理学新进展
comsci
如果我们必须获得某种地球上没有的矿石,才能够进行某些能量输出装置的设计和建造,而要获得这种矿石,又必须首先进行深空探测,而要进行深空探测,又必须获得这种能量输出装置,这个矛盾的循环,会导致地球联盟在与宇宙文明建立关系的时候,陷入困境
怎么办呢?
 
- Oracle 11g新特性:Automatic Diagnostic Repository
daizj
oracleADR
Oracle Database 11g的FDI(Fault Diagnosability Infrastructure)是自动化诊断方面的又一增强。
FDI的一个关键组件是自动诊断库(Automatic Diagnostic Repository-ADR)。
在oracle 11g中,alert文件的信息是以xml的文件格式存在的,另外提供了普通文本格式的alert文件。
这两份log文
- 简单排序:选择排序
dieslrae
选择排序
public void selectSort(int[] array){
int select;
for(int i=0;i<array.length;i++){
select = i;
for(int k=i+1;k<array.leng
- C语言学习六指针的经典程序,互换两个数字
dcj3sjt126com
c
示例程序,swap_1和swap_2都是错误的,推理从1开始推到2,2没完成,推到3就完成了
# include <stdio.h>
void swap_1(int, int);
void swap_2(int *, int *);
void swap_3(int *, int *);
int main(void)
{
int a = 3;
int b =
- php 5.4中php-fpm 的重启、终止操作命令
dcj3sjt126com
PHP
php 5.4中php-fpm 的重启、终止操作命令:
查看php运行目录命令:which php/usr/bin/php
查看php-fpm进程数:ps aux | grep -c php-fpm
查看运行内存/usr/bin/php -i|grep mem
重启php-fpm/etc/init.d/php-fpm restart
在phpinfo()输出内容可以看到php
- 线程同步工具类
shuizhaosi888
同步工具类
同步工具类包括信号量(Semaphore)、栅栏(barrier)、闭锁(CountDownLatch)
闭锁(CountDownLatch)
public class RunMain {
public long timeTasks(int nThreads, final Runnable task) throws InterruptedException {
fin
- bleeding edge是什么意思
haojinghua
DI
不止一次,看到很多讲技术的文章里面出现过这个词语。今天终于弄懂了——通过朋友给的浏览软件,上了wiki。
我再一次感到,没有辞典能像WiKi一样,给出这样体贴人心、一清二楚的解释了。为了表达我对WiKi的喜爱,只好在此一一中英对照,给大家上次课。
In computer science, bleeding edge is a term that
- c中实现utf8和gbk的互转
jimmee
ciconvutf8&gbk编码
#include <iconv.h>
#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include <fcntl.h>
#include <string.h>
#include <sys/stat.h>
int code_c
- 大型分布式网站架构设计与实践
lilin530
应用服务器搜索引擎
1.大型网站软件系统的特点?
a.高并发,大流量。
b.高可用。
c.海量数据。
d.用户分布广泛,网络情况复杂。
e.安全环境恶劣。
f.需求快速变更,发布频繁。
g.渐进式发展。
2.大型网站架构演化发展历程?
a.初始阶段的网站架构。
应用程序,数据库,文件等所有的资源都在一台服务器上。
b.应用服务器和数据服务器分离。
c.使用缓存改善网站性能。
d.使用应用
- 在代码中获取Android theme中的attr属性值
OliveExcel
androidtheme
Android的Theme是由各种attr组合而成, 每个attr对应了这个属性的一个引用, 这个引用又可以是各种东西.
在某些情况下, 我们需要获取非自定义的主题下某个属性的内容 (比如拿到系统默认的配色colorAccent), 操作方式举例一则:
int defaultColor = 0xFF000000;
int[] attrsArray = { andorid.r.
- 基于Zookeeper的分布式共享锁
roadrunners
zookeeper分布式共享锁
首先,说说我们的场景,订单服务是做成集群的,当两个以上结点同时收到一个相同订单的创建指令,这时并发就产生了,系统就会重复创建订单。等等......场景。这时,分布式共享锁就闪亮登场了。
共享锁在同一个进程中是很容易实现的,但在跨进程或者在不同Server之间就不好实现了。Zookeeper就很容易实现。具体的实现原理官网和其它网站也有翻译,这里就不在赘述了。
官
- 两个容易被忽略的MySQL知识
tomcat_oracle
mysql
1、varchar(5)可以存储多少个汉字,多少个字母数字? 相信有好多人应该跟我一样,对这个已经很熟悉了,根据经验我们能很快的做出决定,比如说用varchar(200)去存储url等等,但是,即使你用了很多次也很熟悉了,也有可能对上面的问题做出错误的回答。 这个问题我查了好多资料,有的人说是可以存储5个字符,2.5个汉字(每个汉字占用两个字节的话),有的人说这个要区分版本,5.0
- zoj 3827 Information Entropy(水题)
阿尔萨斯
format
题目链接:zoj 3827 Information Entropy
题目大意:三种底,计算和。
解题思路:调用库函数就可以直接算了,不过要注意Pi = 0的时候,不过它题目里居然也讲了。。。limp→0+plogb(p)=0,因为p是logp的高阶。
#include <cstdio>
#include <cstring>
#include <cmath&