Android Binder ProcessState & IPCThreadState相关介绍

之前几篇博客我们介绍了传统Binder的使用方法,包括c层和java层,这篇博客我们主要介绍下ProcessState和IPCThreadState类的相关方法。


一、正常demon binder调用流程

在一个传统的demon中,如果我们要使用Binder通信,代码大致如下:

int main(int argc, char** argv)  
 {  
     sp<ProcessState> proc(ProcessState::self());
     MediaPlayerService::instantiate();  
     ProcessState::self()->startThreadPool();  
     IPCThreadState::self()->joinThreadPool();  
 }  


1.1 ProcessState::self函数

上面先调用了ProcessState的self方法,

sp<ProcessState> ProcessState::self()
{
    Mutex::Autolock _l(gProcessMutex);
    if (gProcess != NULL) {
        return gProcess;
    }
    gProcess = new ProcessState;
    return gProcess;
}

典型的单例模式,我们先来看看ProcessState的构造函数

ProcessState::ProcessState()
    : mDriverFD(open_driver())
    , mVMStart(MAP_FAILED)
    , mThreadCountLock(PTHREAD_MUTEX_INITIALIZER)
    , mThreadCountDecrement(PTHREAD_COND_INITIALIZER)
    , mExecutingThreadsCount(0)
    , mMaxThreads(DEFAULT_MAX_BINDER_THREADS)
    , mManagesContexts(false)
    , mBinderContextCheckFunc(NULL)
    , mBinderContextUserData(NULL)
    , mThreadPoolStarted(false)
    , mThreadPoolSeq(1)
{
    if (mDriverFD >= 0) {
        // XXX Ideally, there should be a specific define for whether we
        // have mmap (or whether we could possibly have the kernel module
        // availabla).
#if !defined(HAVE_WIN32_IPC)
        // mmap the binder, providing a chunk of virtual address space to receive transactions.
        mVMStart = mmap(0, BINDER_VM_SIZE, PROT_READ, MAP_PRIVATE | MAP_NORESERVE, mDriverFD, 0);
        if (mVMStart == MAP_FAILED) {
            // *sigh*
            ALOGE("Using /dev/binder failed: unable to mmap transaction memory.\n");
            close(mDriverFD);
            mDriverFD = -1;
        }
#else
        mDriverFD = -1;
#endif
    }

    LOG_ALWAYS_FATAL_IF(mDriverFD < 0, "Binder driver could not be opened.  Terminating.");
}

我们在赋值的时候有如下函数 mDriverFD(open_driver())

static int open_driver()
{
    int fd = open("/dev/binder", O_RDWR);//打开binder驱动
    if (fd >= 0) {
        fcntl(fd, F_SETFD, FD_CLOEXEC);
        int vers = 0;
        status_t result = ioctl(fd, BINDER_VERSION, &vers);
        if (result == -1) {
            ALOGE("Binder ioctl to obtain version failed: %s", strerror(errno));
            close(fd);
            fd = -1;
        }
        if (result != 0 || vers != BINDER_CURRENT_PROTOCOL_VERSION) {
            ALOGE("Binder driver protocol does not match user space protocol!");
            close(fd);
            fd = -1;
        }
        size_t maxThreads = DEFAULT_MAX_BINDER_THREADS;//设置binder线程数,默认15
        result = ioctl(fd, BINDER_SET_MAX_THREADS, &maxThreads);
        if (result == -1) {
            ALOGE("Binder ioctl to set max threads failed: %s", strerror(errno));
        }
    } else {
        ALOGW("Opening '/dev/binder' failed: %s\n", strerror(errno));
    }
    return fd;
}

上面这个函数打开了binder驱动节点,然后设置了binder线程数量。binder驱动打开的fd保存在mDriverFD 中。
具体关闭Binder中线程的问题,可以参考Binder通信过程中的用户空间线程池的管理 这篇博文。

上面函数中还通过mmap来把设备文件/dev/binder映射到内存中。


1.2 instantiate函数

而instantiate函数一般是将service注册到serviceManager中去。

void MediaPlayerService::instantiate() {  
     defaultServiceManager()->addService(  
             String16("media.player"), new MediaPlayerService());  
 }  


1.3 ProcessState::startThreadPool函数

我们再来看startThreadPool函数

void ProcessState::startThreadPool()
{
    AutoMutex _l(mLock);
    if (!mThreadPoolStarted) {
        mThreadPoolStarted = true;
        spawnPooledThread(true);
    }
}
而在spawnPooledThread函数中,先建了一个线程PoolThread

void ProcessState::spawnPooledThread(bool isMain)
{
    if (mThreadPoolStarted) {
        String8 name = makeBinderThreadName();
        ALOGV("Spawning new pooled thread, name=%s\n", name.string());
        sp<Thread> t = new PoolThread(isMain);
        t->run(name.string());
    }
}
我们看下这个PoolThread线程,最后还是调用了IPCThreadState::self()->joinThreadPool(mIsMain);

class PoolThread : public Thread
{
public:
    PoolThread(bool isMain)
        : mIsMain(isMain)
    {
    }
    
protected:
    virtual bool threadLoop()
    {
        IPCThreadState::self()->joinThreadPool(mIsMain);
        return false;
    }
    
    const bool mIsMain;
};


我们再来看看IPCThreadState的joinThreadPool函数,先看看其定义,参数默认是true。

 void                joinThreadPool(bool isMain = true);
也就是在main函数中
     ProcessState::self()->startThreadPool(); 
     IPCThreadState::self()->joinThreadPool();

这两个函数都是调用了joinThreadPool函数且参数都是true,只是上面的函数新建了一个thread。


1.4 IPCThreadState::joinThreadPool函数

我们再来看看这个函数 joinThreadPool:

void IPCThreadState::joinThreadPool(bool isMain)
{
    LOG_THREADPOOL("**** THREAD %p (PID %d) IS JOINING THE THREAD POOL\n", (void*)pthread_self(), getpid());

    mOut.writeInt32(isMain ? BC_ENTER_LOOPER : BC_REGISTER_LOOPER);
    
    // This thread may have been spawned by a thread that was in the background
    // scheduling group, so first we will make sure it is in the foreground
    // one to avoid performing an initial transaction in the background.
    set_sched_policy(mMyThreadId, SP_FOREGROUND);
        
    status_t result;
    do {
        processPendingDerefs();
        // now get the next command to be processed, waiting if necessary
        result = getAndExecuteCommand();

        if (result < NO_ERROR && result != TIMED_OUT && result != -ECONNREFUSED && result != -EBADF) {
            ALOGE("getAndExecuteCommand(fd=%d) returned unexpected error %d, aborting",
                  mProcess->mDriverFD, result);
            abort();
        }
        
        // Let this thread exit the thread pool if it is no longer
        // needed and it is not the main process thread.
        if(result == TIMED_OUT && !isMain) {
            break;
        }
    } while (result != -ECONNREFUSED && result != -EBADF);

    LOG_THREADPOOL("**** THREAD %p (PID %d) IS LEAVING THE THREAD POOL err=%p\n",
        (void*)pthread_self(), getpid(), (void*)result);
    
    mOut.writeInt32(BC_EXIT_LOOPER);
    talkWithDriver(false);
}

这个函数就是一个死循环,不断从驱动获取数据,我们来看getAndExecuteCommand函数:

status_t IPCThreadState::getAndExecuteCommand()
{
    status_t result;
    int32_t cmd;

    result = talkWithDriver();//获取binder驱动数据
    if (result >= NO_ERROR) {
        size_t IN = mIn.dataAvail();
        if (IN < sizeof(int32_t)) return result;
        cmd = mIn.readInt32();
        IF_LOG_COMMANDS() {
            alog << "Processing top-level Command: "
                 << getReturnString(cmd) << endl;
        }

        pthread_mutex_lock(&mProcess->mThreadCountLock);
        mProcess->mExecutingThreadsCount++;
        pthread_mutex_unlock(&mProcess->mThreadCountLock);

        result = executeCommand(cmd);

        pthread_mutex_lock(&mProcess->mThreadCountLock);
        mProcess->mExecutingThreadsCount--;
        pthread_cond_broadcast(&mProcess->mThreadCountDecrement);
        pthread_mutex_unlock(&mProcess->mThreadCountLock);

        // After executing the command, ensure that the thread is returned to the
        // foreground cgroup before rejoining the pool.  The driver takes care of
        // restoring the priority, but doesn't do anything with cgroups so we
        // need to take care of that here in userspace.  Note that we do make
        // sure to go in the foreground after executing a transaction, but
        // there are other callbacks into user code that could have changed
        // our group so we want to make absolutely sure it is put back.
        set_sched_policy(mMyThreadId, SP_FOREGROUND);
    }

    return result;
}
getAndExecuteCommand函数中先调用talkWithDriver就是从binder驱动获取数据,然后调用executeCommand执行命令

status_t IPCThreadState::executeCommand(int32_t cmd)
{
    BBinder* obj;
    RefBase::weakref_type* refs;
    status_t result = NO_ERROR;
    
    switch ((uint32_t)cmd) {
    case BR_ERROR:
        result = mIn.readInt32();
        break;
        
    case BR_OK:
        break;
        
......
    
    case BR_TRANSACTION:
        {
            binder_transaction_data tr;
            result = mIn.read(&tr, sizeof(tr));
            ALOG_ASSERT(result == NO_ERROR,
                "Not enough command data for brTRANSACTION");
            if (result != NO_ERROR) break;
            
            Parcel buffer;
            buffer.ipcSetDataReference(
                reinterpret_cast<const uint8_t*>(tr.data.ptr.buffer),
                tr.data_size,
                reinterpret_cast<const binder_size_t*>(tr.data.ptr.offsets),
                tr.offsets_size/sizeof(binder_size_t), freeBuffer, this);
            
            const pid_t origPid = mCallingPid;
            const uid_t origUid = mCallingUid;
            const int32_t origStrictModePolicy = mStrictModePolicy;
            const int32_t origTransactionBinderFlags = mLastTransactionBinderFlags;

            mCallingPid = tr.sender_pid;
            mCallingUid = tr.sender_euid;
            mLastTransactionBinderFlags = tr.flags;

            int curPrio = getpriority(PRIO_PROCESS, mMyThreadId);
            if (gDisableBackgroundScheduling) {
                if (curPrio > ANDROID_PRIORITY_NORMAL) {
                    // We have inherited a reduced priority from the caller, but do not
                    // want to run in that state in this process.  The driver set our
                    // priority already (though not our scheduling class), so bounce
                    // it back to the default before invoking the transaction.
                    setpriority(PRIO_PROCESS, mMyThreadId, ANDROID_PRIORITY_NORMAL);
                }
            } else {
                if (curPrio >= ANDROID_PRIORITY_BACKGROUND) {
                    // We want to use the inherited priority from the caller.
                    // Ensure this thread is in the background scheduling class,
                    // since the driver won't modify scheduling classes for us.
                    // The scheduling group is reset to default by the caller
                    // once this method returns after the transaction is complete.
                    set_sched_policy(mMyThreadId, SP_BACKGROUND);
                }
            }

            //ALOGI(">>>> TRANSACT from pid %d uid %d\n", mCallingPid, mCallingUid);

            Parcel reply;
            status_t error;
            IF_LOG_TRANSACTIONS() {
                TextOutput::Bundle _b(alog);
                alog << "BR_TRANSACTION thr " << (void*)pthread_self()
                    << " / obj " << tr.target.ptr << " / code "
                    << TypeCode(tr.code) << ": " << indent << buffer
                    << dedent << endl
                    << "Data addr = "
                    << reinterpret_cast<const uint8_t*>(tr.data.ptr.buffer)
                    << ", offsets addr="
                    << reinterpret_cast<const size_t*>(tr.data.ptr.offsets) << endl;
            }
            if (tr.target.ptr) {
                sp<BBinder> b((BBinder*)tr.cookie);
                error = b->transact(tr.code, buffer, &reply, tr.flags);//这个最终到service的onTransact函数

            } else {
                error = the_context_object->transact(tr.code, buffer, &reply, tr.flags);
            }

            //ALOGI("<<<< TRANSACT from pid %d restore pid %d uid %d\n",
            //     mCallingPid, origPid, origUid);
            
            if ((tr.flags & TF_ONE_WAY) == 0) {
                LOG_ONEWAY("Sending reply to %d!", mCallingPid);
                if (error < NO_ERROR) reply.setError(error);
                sendReply(reply, 0);
            } else {
                LOG_ONEWAY("NOT sending reply to %d!", mCallingPid);
            }
            
            mCallingPid = origPid;
            mCallingUid = origUid;
            mStrictModePolicy = origStrictModePolicy;
            mLastTransactionBinderFlags = origTransactionBinderFlags;

            IF_LOG_TRANSACTIONS() {
                TextOutput::Bundle _b(alog);
                alog << "BC_REPLY thr " << (void*)pthread_self() << " / obj "
                    << tr.target.ptr << ": " << indent << reply << dedent << endl;
            }
            
        }
        break;
......
}		

上面就是处理各种命令,最后BR_TRANSACTION命令的时候会调用BBinder的transact,最后调用service中的onTransact函数。

status_t BBinder::transact(
    uint32_t code, const Parcel& data, Parcel* reply, uint32_t flags)
{
    data.setDataPosition(0);

    status_t err = NO_ERROR;
    switch (code) {
        case PING_TRANSACTION:
            reply->writeInt32(pingBinder());
            break;
        default:
            err = onTransact(code, data, reply, flags);//调用onTransact函数
            break;
    }

    if (reply != NULL) {
        reply->setDataPosition(0);
    }

    return err;
}



二、不使用Binder线程

还记得在healthd中,我们没有使用Binder线程,我们看看代码是怎么写的。

static void binder_event(uint32_t /*epevents*/) {
    IPCThreadState::self()->handlePolledCommands();
}

void healthd_mode_android_init(struct healthd_config* /*config*/) {
    ProcessState::self()->setThreadPoolMaxThreadCount(0);
    IPCThreadState::self()->disableBackgroundScheduling(true);
    IPCThreadState::self()->setupPolling(&gBinderFd);

    if (gBinderFd >= 0) {
        if (healthd_register_event(gBinderFd, binder_event))
            KLOG_ERROR(LOG_TAG,
                       "Register for binder events failed\n");
    }

    gBatteryPropertiesRegistrar = new BatteryPropertiesRegistrar();
    gBatteryPropertiesRegistrar->publish();
}

具体是调用healthd_mode_android_init函数,在这个函数先调用Binder接口,然后将fd 注册到epoll中去,处理函数就是binder_event函数。


2.1 ProcessState::setThreadPoolMaxThreadCount函数

先来看设置Binder最大线程数的函数:

status_t ProcessState::setThreadPoolMaxThreadCount(size_t maxThreads) {
    status_t result = NO_ERROR;
    if (ioctl(mDriverFD, BINDER_SET_MAX_THREADS, &maxThreads) != -1) {
        mMaxThreads = maxThreads;
    } else {
        result = -errno;
        ALOGE("Binder ioctl to set max threads failed: %s", strerror(-result));
    }
    return result;
}

最后是通过ioctl设置最大线程数。


2.2 IPCThreadState::disableBackgroundScheduling函数

下面我们再来看disableBackgroundScheduling函数,应该是禁止后台线程的意思

void IPCThreadState::disableBackgroundScheduling(bool disable)
{
    gDisableBackgroundScheduling = disable;
}

我们再来看看在哪里使用了gDisableBackgroundScheduling 这个变量, 还是在executeCommand函数中处理BR_TRANSACTION命令时有下面这段代码

    case BR_TRANSACTION:
        {
            binder_transaction_data tr;
            result = mIn.read(&tr, sizeof(tr));
            ALOG_ASSERT(result == NO_ERROR,
                "Not enough command data for brTRANSACTION");
            if (result != NO_ERROR) break;
            
            Parcel buffer;
            buffer.ipcSetDataReference(
                reinterpret_cast<const uint8_t*>(tr.data.ptr.buffer),
                tr.data_size,
                reinterpret_cast<const binder_size_t*>(tr.data.ptr.offsets),
                tr.offsets_size/sizeof(binder_size_t), freeBuffer, this);
            
            const pid_t origPid = mCallingPid;
            const uid_t origUid = mCallingUid;
            const int32_t origStrictModePolicy = mStrictModePolicy;
            const int32_t origTransactionBinderFlags = mLastTransactionBinderFlags;

            mCallingPid = tr.sender_pid;
            mCallingUid = tr.sender_euid;
            mLastTransactionBinderFlags = tr.flags;

            int curPrio = getpriority(PRIO_PROCESS, mMyThreadId);
            if (gDisableBackgroundScheduling) {
                if (curPrio > ANDROID_PRIORITY_NORMAL) {
                    // We have inherited a reduced priority from the caller, but do not
                    // want to run in that state in this process.  The driver set our
                    // priority already (though not our scheduling class), so bounce
                    // it back to the default before invoking the transaction.
                    setpriority(PRIO_PROCESS, mMyThreadId, ANDROID_PRIORITY_NORMAL);
                }
            } else {
                if (curPrio >= ANDROID_PRIORITY_BACKGROUND) {
                    // We want to use the inherited priority from the caller.
                    // Ensure this thread is in the background scheduling class,
                    // since the driver won't modify scheduling classes for us.
                    // The scheduling group is reset to default by the caller
                    // once this method returns after the transaction is complete.
                    set_sched_policy(mMyThreadId, SP_BACKGROUND);
                }
            }


2.3 IPCThreadState::setupPolling


下面我们再来看看setupPolling函数

int IPCThreadState::setupPolling(int* fd)
{
    if (mProcess->mDriverFD <= 0) {
        return -EBADF;
    }

    mOut.writeInt32(BC_ENTER_LOOPER);
    *fd = mProcess->mDriverFD;
    return 0;
}

我们看代码这个函数只是获取Binder驱动的fd


2.4 Binder驱动 有数据

然后我们把fd加入主线程的epoll进行监听,当Binder驱动有数据的时候,就会调用binder_event函数

static void binder_event(uint32_t /*epevents*/) {
    IPCThreadState::self()->handlePolledCommands();
}
我们来看下handlePolledCommands函数:

status_t IPCThreadState::handlePolledCommands()
{
    status_t result;

    do {
        result = getAndExecuteCommand();
    } while (mIn.dataPosition() < mIn.dataSize());

    processPendingDerefs();
    flushCommands();
    return result;
}
getAndExecuteCommand函数之前我们分析过,这里再来看下:

status_t IPCThreadState::getAndExecuteCommand()
{
    status_t result;
    int32_t cmd;

    result = talkWithDriver();//获取binder驱动数据
    if (result >= NO_ERROR) {
        size_t IN = mIn.dataAvail();
        if (IN < sizeof(int32_t)) return result;
        cmd = mIn.readInt32();
        IF_LOG_COMMANDS() {
            alog << "Processing top-level Command: "
                 << getReturnString(cmd) << endl;
        }

        pthread_mutex_lock(&mProcess->mThreadCountLock);
        mProcess->mExecutingThreadsCount++;
        pthread_mutex_unlock(&mProcess->mThreadCountLock);

        result = executeCommand(cmd);//执行命令

        pthread_mutex_lock(&mProcess->mThreadCountLock);
        mProcess->mExecutingThreadsCount--;
        pthread_cond_broadcast(&mProcess->mThreadCountDecrement);
        pthread_mutex_unlock(&mProcess->mThreadCountLock);

        // After executing the command, ensure that the thread is returned to the
        // foreground cgroup before rejoining the pool.  The driver takes care of
        // restoring the priority, but doesn't do anything with cgroups so we
        // need to take care of that here in userspace.  Note that we do make
        // sure to go in the foreground after executing a transaction, but
        // there are other callbacks into user code that could have changed
        // our group so we want to make absolutely sure it is put back.
        set_sched_policy(mMyThreadId, SP_FOREGROUND);
    }

    return result;
}

先获取binder驱动数据,然后再执行executeCommand函数,和之前一样执行到BR_TRANSACTION命令会调用BBinder的transact,最终执行到service的onTransact函数中。

当然这些数据的处理都是在healthd的主线程中,是epoll在binder驱动有数据的时候执行的。


2.5 处理完数据后 清理工作

我们继续看handlePolledCommands函数

status_t IPCThreadState::handlePolledCommands()
{
    status_t result;

    do {
        result = getAndExecuteCommand();
    } while (mIn.dataPosition() < mIn.dataSize());

    processPendingDerefs();
    flushCommands();
    return result;
}

最后做一些清理工作,在flushCommands函数中将和binder驱动的交互关闭。

void IPCThreadState::flushCommands()
{
    if (mProcess->mDriverFD <= 0)
        return;
    talkWithDriver(false);
}



三、总结

这篇博客我们主要讲了使用binder的demon的binder调用流程,以及不使用binder线程的代码调用方法,举例了healthd中的一个例子。



你可能感兴趣的:(Android Binder ProcessState & IPCThreadState相关介绍)