数据结构-树-学习笔记

http://interactivepython.org/courselib/static/pythonds/index.html
Problem Solving with Algorithms and Data Structures 


  • Examples of Trees
在计算机科学中有许多应用:
        操作系统,数据库,计算机网络
        文件系统

         网页






  • Vocabulary and Definitions
元素:
        root,branches,leaves

特性:
        hierarchical
               在每个节点问一个问题,选择合适的答案的路径继续向下走
               可以移动任意一个子树,不影响低层的结构
        一个节点的children和另一个节点的children是独立的
               因此在改变子节点的时候不会影响其他子节点
        每个叶节点是唯一的
               因此从根到叶节点有唯一的一条路径

概念:
        node: name->key, additional information->payload
        edge:   节点间的关系,一个节点只有一个incoming edge,有多个outgoing edge
        root: 树里唯一一个没有incoming edge的节点
        path, children,parent,sibling,subtree
        leaf node:没有children的node
        level: 从root到节点的path中edge的个数
        height: 这个树里最大的level
        binary tree: 树里的每个节点都最多只有两个children

定义:
Definition One: A tree consists of a set of nodes and a set of edges that connect pairs of nodes.
Definition Two: A tree is either empty or consists of a root and zero or more subtrees, each of which is also a tree. The root of each subtree is connected to the root of the parent tree by an edge.

  • List of Lists Representation
a tree represented by a list of lists
creating a simple tree using a list

myTree = ['a',['b',['d',[],[]],['e',[],[]]],['c',['f',[],[]],[]]]
print(myTree)
print('left subtree =',myTree[1])
print(myTree[1][1])
print(myTree[1][1][1])

每个list的第一个元素是root,第二个元素是left subtree,第三个元素是right subtree
叶节点有一个root和两个空的list











def BinaryTree(r):
    return [r, [], []]


#to insert a left child
def insertLeft(root,newBranch):
    t = root.pop(1)             #1st level left subtree
    if len(t) > 1:              #if null, len is 0
        root.insert(1,[newBranch,t,[]])       #insert newBranch in left position
    else:
        root.insert(1,[newBranch, [], []])
    return root



r = BinaryTree(3)
print(r)
    #[3, [], []]
print(len(r.pop(1)))
    #0

insertLeft(r,4)
print(r)
    #[3, [4, [], []]]

insertLeft(r,5)
print(r)
    #[3, [5, [4, [], []], []]]


root = r
newBranch = 6

t = root.pop(1)
print(t)
    #[5, [4, [], []], []]

print(len(t))
    #3

root.insert(1,[newBranch,t,[]])
print(root)
    #[3, [6, [5, [4, [], []], []], []]]

t = root.pop(1)
print(t)
    #[6, [5, [4, [], []], []], []]

print(len(t))
    #3


def BinaryTree(r):
    return [r, [], []]


#to insert a left child
def insertLeft(root,newBranch):
    t = root.pop(1)             #1st level left subtree
    if len(t) > 1:              #if null, len is 0
        root.insert(1,[newBranch,t,[]])       #insert newBranch in left position
    else:
        root.insert(1,[newBranch, [], []])
    return root

r = BinaryTree(3)
insertLeft(r,4)
insertLeft(r,5)

def insertRight(root,newBranch):
    t = root.pop(2)
    if len(t)>1:
        root.insert(2,[newBranch,[],t])
    else:
        root.insert(2,[newBranch,[],[]])
    return root

insertRight(r,6)
print(r)

insertRight(r,7)
print(r)


def getLeftChild(root):
    return root[1]

def getRightChild(root):
    return root[2]

print(getLeftChild(r))
print(getRightChild(r))
print(getRightChild(getLeftChild(r)))


def getRootVal(root):
    return root[0]

def setRootVal(root,newVal):
    root[0] = newVal
    return root[0]

print(getRootVal(r))

setRootVal(r,10)
print(getRootVal(r))



你可能感兴趣的:(数据结构,python,学习笔记)