跟Google学写代码--Chromium/base--cpu源码学习及应用

Chromium是一个伟大的、庞大的开源工程,很多值得我们学习的地方。
前面写道:
《跟Google学写代码–Chromium/base–stl_util源码学习及应用》

《跟Google学写代码–Chromium/base–windows_version源码学习及应用》

今天分享cpu相关的操作。

先看看这个枚举:

  enum IntelMicroArchitecture {
    PENTIUM,
    SSE,
    SSE2,
    SSE3,
    SSSE3,
    SSE41,
    SSE42,
    AVX,
    MAX_INTEL_MICRO_ARCHITECTURE
  };

什么是sse?
SSE(Streaming SIMD Extensions)是英特尔在AMD的3D Now!发布一年之后,在其计算机芯片Pentium III中引入的指令集,是MMX的超集。

SSE2
SSE2是Intel在Pentium 4处理器的最初版本中引入的,但是AMD后来在Opteron 和Athlon 64处理器中也加入了SSE2的支持。SSE2指令集添加了对64位双精度浮点数的支持。这个指令集还增加了对CPU快取的控制指令。AMD对它的扩展增加了8个XMM寄存器,但是需要切换到64位模式(AMD64)才可以使用这些寄存器。

SSE3
SSE3是Intel在Pentium 4处理器的 Prescott 核心中引入的第三代SIMD指令集,AMD在Athlon 64的第五个版本,Venice核心中也加入了SSE3的支持。以及对超执行绪技术的支持。
SSSE3
SSSE3是Intel针对SSE3指令集的一次额外扩充,最早内建于Core 2 Duo处理器中。

SSE4
SSE4是Intel在Penryn核心的Core 2 Duo与Core 2 Solo处理器时,新增的47条新多媒体指令集,多媒体指令集,并内建在Phenom与Opteron等K10架构处理器中,不过无法与Intel的SSE4系列指令集相容。

SSE5
SSE5]是AMD为了打破Intel垄断在处理器指令集的独霸地位所提出的,SSE5初期规划将加入超过100条新指令,其中最引人注目的就是三算子指令(3-Operand Instructions)及熔合乘法累积(Fused Multiply Accumulate)。其中,三算子指令让处理器可将一个数学或逻辑函式库,套用到算子或输入资料。借由增加算子的数量,一个 x86 指令能处理二至三笔资料, SSE5 允许将多个简单指令汇整成一个指令,达到更有效率的指令处理模式。提升为三运算指令的运算能力,是少数 RISC 架构的水平。熔合乘法累积让允许建立新的指令,有效率地执行各种复杂的运算。熔合乘法累积可结合乘法与加法运算,透过单一指令执行多笔重复计算。透过简化程式码,让系统能迅速执行绘图着色、快速相片着色、音场音效,以及复杂向量演算等效能密集的应用作业。SSE5最快将内建于AMD下一代Bulldozer核心。

AVX
AVX是Intel的SSE延伸架构,如IA16至IA32般的把暂存器XMM 128bit提升至YMM 256bit,以增加一倍的运算效率。此架构支持了三运算指令(3-Operand Instructions),减少在编码上需要先复制才能运算的动作。在微码部分使用了LES LDS这两少用的指令作为延伸指令Prefix。

cpu.h
由于这个类比较简短,所以就贴上所有的头文件了:

#ifndef BASE_CPU_H_
#define BASE_CPU_H_

#include <string>

#include "base/base_export.h"

namespace base {

// Query information about the processor.
class BASE_EXPORT CPU {
 public:
  // Constructor
  CPU();

  enum IntelMicroArchitecture {
    PENTIUM,
    SSE,
    SSE2,
    SSE3,
    SSSE3,
    SSE41,
    SSE42,
    AVX,
    MAX_INTEL_MICRO_ARCHITECTURE
  };

  // Accessors for CPU information.
  const std::string& vendor_name() const { return cpu_vendor_; }
  int signature() const { return signature_; }
  int stepping() const { return stepping_; }
  int model() const { return model_; }
  int family() const { return family_; }
  int type() const { return type_; }
  int extended_model() const { return ext_model_; }
  int extended_family() const { return ext_family_; }
  bool has_mmx() const { return has_mmx_; }
  bool has_sse() const { return has_sse_; }
  bool has_sse2() const { return has_sse2_; }
  bool has_sse3() const { return has_sse3_; }
  bool has_ssse3() const { return has_ssse3_; }
  bool has_sse41() const { return has_sse41_; }
  bool has_sse42() const { return has_sse42_; }
  bool has_avx() const { return has_avx_; }
  // has_avx_hardware returns true when AVX is present in the CPU. This might
  // differ from the value of |has_avx()| because |has_avx()| also tests for
  // operating system support needed to actually call AVX instuctions.
  // Note: you should never need to call this function. It was added in order
  // to workaround a bug in NSS but |has_avx()| is what you want.
  bool has_avx_hardware() const { return has_avx_hardware_; }
  bool has_aesni() const { return has_aesni_; }
  bool has_non_stop_time_stamp_counter() const {
    return has_non_stop_time_stamp_counter_;
  }
  // has_broken_neon is only valid on ARM chips. If true, it indicates that we
  // believe that the NEON unit on the current CPU is flawed and cannot execute
  // some code. See https://code.google.com/p/chromium/issues/detail?id=341598
  bool has_broken_neon() const { return has_broken_neon_; }

  IntelMicroArchitecture GetIntelMicroArchitecture() const;
  const std::string& cpu_brand() const { return cpu_brand_; }

 private:
  // Query the processor for CPUID information.
  void Initialize();

  int signature_;  // raw form of type, family, model, and stepping
  int type_;  // process type
  int family_;  // family of the processor
  int model_;  // model of processor
  int stepping_;  // processor revision number
  int ext_model_;
  int ext_family_;
  bool has_mmx_;
  bool has_sse_;
  bool has_sse2_;
  bool has_sse3_;
  bool has_ssse3_;
  bool has_sse41_;
  bool has_sse42_;
  bool has_avx_;
  bool has_avx_hardware_;
  bool has_aesni_;
  bool has_non_stop_time_stamp_counter_;
  bool has_broken_neon_;
  std::string cpu_vendor_;
  std::string cpu_brand_;
};

}  // namespace base

#endif // BASE_CPU_H_

Initialize的实现

void CPU::Initialize() {
#if defined(ARCH_CPU_X86_FAMILY)
  int cpu_info[4] = {-1};
  char cpu_string[48];

  // __cpuid with an InfoType argument of 0 returns the number of
  // valid Ids in CPUInfo[0] and the CPU identification string in
  // the other three array elements. The CPU identification string is
  // not in linear order. The code below arranges the information
  // in a human readable form. The human readable order is CPUInfo[1] |
  // CPUInfo[3] | CPUInfo[2]. CPUInfo[2] and CPUInfo[3] are swapped
  // before using memcpy to copy these three array elements to cpu_string.
  __cpuid(cpu_info, 0);
  int num_ids = cpu_info[0];
  std::swap(cpu_info[2], cpu_info[3]);
  memcpy(cpu_string, &cpu_info[1], 3 * sizeof(cpu_info[1]));
  cpu_vendor_.assign(cpu_string, 3 * sizeof(cpu_info[1]));

  // Interpret CPU feature information.
  if (num_ids > 0) {
    __cpuid(cpu_info, 1);
    signature_ = cpu_info[0];
    stepping_ = cpu_info[0] & 0xf;
    model_ = ((cpu_info[0] >> 4) & 0xf) + ((cpu_info[0] >> 12) & 0xf0);
    family_ = (cpu_info[0] >> 8) & 0xf;
    type_ = (cpu_info[0] >> 12) & 0x3;
    ext_model_ = (cpu_info[0] >> 16) & 0xf;
    ext_family_ = (cpu_info[0] >> 20) & 0xff;
    has_mmx_ =   (cpu_info[3] & 0x00800000) != 0;
    has_sse_ =   (cpu_info[3] & 0x02000000) != 0;
    has_sse2_ =  (cpu_info[3] & 0x04000000) != 0;
    has_sse3_ =  (cpu_info[2] & 0x00000001) != 0;
    has_ssse3_ = (cpu_info[2] & 0x00000200) != 0;
    has_sse41_ = (cpu_info[2] & 0x00080000) != 0;
    has_sse42_ = (cpu_info[2] & 0x00100000) != 0;
    has_avx_hardware_ =
                 (cpu_info[2] & 0x10000000) != 0;
    // AVX instructions will generate an illegal instruction exception unless
    // a) they are supported by the CPU,
    // b) XSAVE is supported by the CPU and
    // c) XSAVE is enabled by the kernel.
    // See http://software.intel.com/en-us/blogs/2011/04/14/is-avx-enabled
    //
    // In addition, we have observed some crashes with the xgetbv instruction
    // even after following Intel's example code. (See crbug.com/375968.)
    // Because of that, we also test the XSAVE bit because its description in
    // the CPUID documentation suggests that it signals xgetbv support.
    has_avx_ =
        has_avx_hardware_ &&
        (cpu_info[2] & 0x04000000) != 0 /* XSAVE */ &&
        (cpu_info[2] & 0x08000000) != 0 /* OSXSAVE */ &&
        (_xgetbv(0) & 6) == 6 /* XSAVE enabled by kernel */;
    has_aesni_ = (cpu_info[2] & 0x02000000) != 0;
  }

  // Get the brand string of the cpu.
  __cpuid(cpu_info, 0x80000000);
  const int parameter_end = 0x80000004;
  int max_parameter = cpu_info[0];

  if (cpu_info[0] >= parameter_end) {
    char* cpu_string_ptr = cpu_string;

    for (int parameter = 0x80000002; parameter <= parameter_end &&
         cpu_string_ptr < &cpu_string[sizeof(cpu_string)]; parameter++) {
      __cpuid(cpu_info, parameter);
      memcpy(cpu_string_ptr, cpu_info, sizeof(cpu_info));
      cpu_string_ptr += sizeof(cpu_info);
    }
    cpu_brand_.assign(cpu_string, cpu_string_ptr - cpu_string);
  }

  const int parameter_containing_non_stop_time_stamp_counter = 0x80000007;
  if (max_parameter >= parameter_containing_non_stop_time_stamp_counter) {
    __cpuid(cpu_info, parameter_containing_non_stop_time_stamp_counter);
    has_non_stop_time_stamp_counter_ = (cpu_info[3] & (1 << 8)) != 0;
  }
#elif defined(ARCH_CPU_ARM_FAMILY) && (defined(OS_ANDROID) || defined(OS_LINUX))
  cpu_brand_.assign(g_lazy_cpuinfo.Get().brand());
  has_broken_neon_ = g_lazy_cpuinfo.Get().has_broken_neon();
#endif
}

CPU::IntelMicroArchitecture CPU::GetIntelMicroArchitecture() const {
  if (has_avx()) return AVX;
  if (has_sse42()) return SSE42;
  if (has_sse41()) return SSE41;
  if (has_ssse3()) return SSSE3;
  if (has_sse3()) return SSE3;
  if (has_sse2()) return SSE2;
  if (has_sse()) return SSE;
  return PENTIUM;
}

上面的代码中用到了__cpuid,下面就行介绍介绍。

__cpuid

功能:
Generates the cpuid instruction available on x86 and x64, which queries the processor for information about the supported features and CPU type.

原型:

void __cpuid(
   int CPUInfo[4],
   int InfoType
);

更多请关注:
https://msdn.microsoft.com/en-us/library/hskdteyh(VS.80).aspx

__cpuidex函数的InfoType参数是CPUID指令的eax参数,即功能ID。ECXValue参数是CPUID指令的ecx参数,即子功能ID。CPUInfo参数用于接收输出的eax, ebx, ecx, edx这四个寄存器。

用条件编译判断VC编译器对Intrinsics函数的支持性(_MSC_VER)。

使用

int main(int argc, char* argv[]) {

  base::CPU *cpu = new base::CPU();
  std::cout << cpu->cpu_brand() << std::endl;
  system("pause");
  return 0;
}

输出:
Intel(R) Core(TM) i7-5500U CPU @ 2.40GHz

你可能感兴趣的:(windows,cpu,chromium)