Sql查询语句优化心得 MySQL优化
作为一个互联网开发工程师,数据库的知识是必不可少的,要是写几条查询效率很差的SQL,当数据库的数据到达一定级别以后,没几个人同时访问你的网站,就能把你的一台服务器搞挂啦!
【个人认为:最为简单的测试方法就是把SQL语句在命令行下运行,若查询的语句需要0.03秒以上的SQL语句都需要优化。】
如下的大多都来自网络:终归起来、都是一些简单SQL优化,不敢保证这说法绝对的权威哦。
1、用程序中,保证在实现功能的基础上,尽量减少对数据库的访问次数;通过搜索参数,尽量减少对表的访问行数,最小化结果集,从而减轻网络负担;能够分开的操作尽量分开处理,提高每次的响应速度;在数据窗口使用SQL时,尽量把使用的索引放在选择的首列;算法的结构尽量简单;在查询时,不要过多地使用通配符如
SELECT * FROM T1语句,
要用到几列就选择几列如:SELECT COL1,COL2 FROM T1;
在可能的情况下尽量限制尽量结果集行数如:SELECT TOP 300 COL1,COL2,COL3 FROM T1,
因为某些情况下用户是不需要那么多的数据的。不要在应用中使用数据库游标,游标是非常有用的工具,但比使用常规的、面向集的SQL语句需要更大的开销;按照特定顺序提取数据的查找
2、避免使用不兼容的数据类型。例如float和int、char和varchar、binary和varbinary是不兼容的。数据类型的不兼容可能使优化器无法执行一些本来可以进行的优化操作。例如
: SELECT name FROM employee WHERE salary >60000 在这条语句中,如salary字段是money型的,则优化器很难对其进行优化,因为60000是个整型数。我们应当在编程时将整型转化成为钱币型,而不要等到运行时转化。
3、尽量避免在WHERE子句中对字段进行函数或表达式操作,这将导致引擎放弃使用索引而进行全表扫描。如:
SELECT * FROM T1 WHERE F1/2=100 应改为: SELECT * FROM T1 WHERE F1=100*2
SELECT * FROM RECORD WHERE SUBSTRING(CARD_NO,1,4)=’5378’应改为:SELECT * FROM RECORD WHERE CARD_NO LIKE ‘5378%’
SELECT member_number, first_name, last_name FROM members WHERE DATEDIFF(yy,datofbirth,GETDATE()) > 21
应改为:SELECT member_number, first_name, last_name FROM members WHERE dateofbirth < DATEADD(yy,-21,GETDATE())
即:任何对列的操作都将导致表扫描,它包括数据库函数、计算表达式等等,查询时要尽可能将操作移至等号右边。
4、避免使用!=或<>、IS NULL或IS NOT NULL、IN ,NOT IN等这样的操作符,因为这会使系统无法使用索引,而只能直接搜索表中的数据。例如:
SELECT id FROM employee WHERE id != "B%" 优化器将无法通过索引来确定将要命中的行数,因此需要搜索该表的所有行。
5、尽量使用数字型字段,一部分开发人员和数据库管理人员喜欢把包含数值信息的字段设计为字符型,这会降低查询和连接的性能,并会增加存储开销。这是因为引擎在处理查询和连接回逐个比较字符串中每一个字符,而对于数字型而言只需要比较一次就够了。
6、合理使用EXISTS,NOT EXISTS子句。如下所示:
1.SELECT SUM(T1.C1)FROM T1 WHERE(SELECT COUNT(*)FROM T2 WHERE T2.C2=T1.C2>0)
2.SELECT SUM(T1.C1) FROM T1WHERE EXISTS(SELECT * FROM T2 WHERE T2.C2=T1.C2)
两者产生相同的结果,但是后者的效率显然要高于前者。因为后者不会产生大量锁定的表扫描或是索引扫描。如果你想校验表里是否存在某条纪录,不要用count(*)那样效率很低,而且浪费服务器资源。可以用EXISTS代替。如:
IF (SELECT COUNT(*) FROM table_name WHERE column_name = 'xxx')可以写成:IF EXISTS (SELECT * FROM table_name WHERE column_name = 'xxx')
经常需要写一个T_SQL语句比较一个父结果集和子结果集,从而找到是否存在在父结果集中有而在子结果集中没有的记录,如:
1.SELECT a.hdr_key FROM hdr_tbl a---- tbl a 表示tbl用别名a代替WHERE NOT EXISTS (SELECT * FROM dtl_tbl b WHERE a.hdr_key = b.hdr_key)
2.SELECT a.hdr_key FROM hdr_tbl a LEFT JOIN dtl_tbl b ON a.hdr_key = b.hdr_key WHERE b.hdr_key IS NULL
3.SELECT hdr_key FROM hdr_tbl WHERE hdr_key NOT IN (SELECT hdr_key FROM dtl_tbl)
三种写法都可以得到同样正确的结果,但是效率依次降低。
7、尽量避免在索引过的字符数据中,使用非打头字母搜索。这也使得引擎无法利用索引。
见如下例子:
SELECT * FROM T1 WHERE NAME LIKE ‘%L%’
SELECT * FROM T1 WHERE SUBSTING(NAME,2,1)=’L’
SELECT * FROM T1 WHERE NAME LIKE ‘L%’
即使NAME字段建有索引,前两个查询依然无法利用索引完成加快操作,引擎不得不对全表所有数据逐条操作来完成任务。而第三个查询能够使用索引来加快操作。
8、分利用连接条件,在某种情况下,两个表之间可能不只一个的连接条件,这时在WHERE 子句中将连接条件完整的写上,有可能大大提高查询速度。例:
SELECT SUM(A.AMOUNT) FROM ACCOUNT A,CARD B WHERE A.CARD_NO = B.CARD_NO
SELECT SUM(A.AMOUNT) FROM ACCOUNT A,CARD B WHERE A.CARD_NO = B.CARD_NO AND A.ACCOUNT_NO=B.ACCOUNT_NO
第二句将比第一句执行快得多。
9、消除对大型表行数据的顺序存取尽管在所有的检查列上都有索引,但某些形式的WHERE子句强迫优化器使用顺序存取。 如:
SELECT * FROM orders WHERE (customer_num=104 AND order_num>1001) OR order_num=1008 解决办法可以使用并集来避免顺序存取:
SELECT *FROM orders WHERE customer_num=104 AND order_num>1001 UNION SELECT * FROM orders WHERE order_num=1008
这样就能利用索引路径处理查询。【数据结果集很多,但查询条件限定后结果集不大的情况下,后面的语句快】
11、能够用BETWEEN的就不要用IN SELECT * FROM T1 WHERE ID IN (10,11,12,13,14)改成:SELECT * FROM T1 WHERE ID BETWEEN 10 AND 14 因为IN会使系统无法使用索引,而只能直接搜索表中的数据。
12、DISTINCT的就不用GROUP BY
SELECT OrderID FROM Details WHERE UnitPrice > 10 GROUP BY OrderID 可改为:SELECT DISTINCT OrderID FROM Details WHERE UnitPrice > 10
13、能用UNION ALL就不要用UNION UNION ALL不执行SELECT DISTINCT函数,这样就会减少很多不必要的资源
14、不要写一些不做任何事的查询
如:SELECT COL1 FROM T1 WHERE 1=0 SELECT COL1 FROM T1 WHERE COL1=1 AND COL1=2
这类死码不会返回任何结果集,但是会消耗系统资源。
15、尽量不要用SELECT INTO语句。
SELECT INTO 语句会导致表锁定,阻止其他用户访问该表。
16、必要时强制查询优化器使用某个索引
SELECT * FROM T1 WHERE nextprocess = 1 AND processid IN (8,32,45)
改成:
SELECT * FROM T1 (INDEX = IX_ProcessID) WHERE nextprocess = 1 AND processid IN (8,32,45) 则查询优化器将会强行利用索引IX_ProcessID 执行查询。
17、虽然UPDATE、DELETE语句的写法基本固定,但是还是对UPDATE语句给点建议:
a) 尽量不要修改主键字段。
b) 当修改VARCHAR型字段时,尽量使用相同长度内容的值代替。
c) 尽量最小化对于含有UPDATE触发器的表的UPDATE操作。
d) 避免UPDATE将要复制到其他数据库的列。
e) 避免UPDATE建有很多索引的列。
f) 避免UPDATE在WHERE子句条件中的列。
保证在实现功能的基础上,尽量减少对数据库的访问次数;通过搜索参数,尽量减少对表的访问行数,最小化结果集,从而减轻网络负担;能够分开的操作尽量分开处理,提高每次的响应速度;在数据窗口使用SQL时,尽量把使用的索引放在选择的首列;算法的结构尽量简单;在查询时,不要过多地使用通配符如
SELECT * FROM T1语句,
要用到几列就选择几列如:
SELECT COL1,COL2 FROM T1;在可能的情况下尽量限制尽量结果集行数如:
SELECT TOP 300 COL1,COL2,COL3 FROM T1,因为某些情况下用户是不需要那么多的数据的。
在没有建索引的情况下,数据库查找某一条数据,就必须进行全表扫描了,对所有数据进行一次遍历,查找出符合条件的记录。
在数据量比较小的情况下,也许看不出明显的差别,但是当数据量大的情况下,这种情况就是极为糟糕的了。
SQL语句在SQL SERVER中是如何执行的,他们担心自己所写的
SQL语句会被SQL SERVER误解。比如:
select * from table1 where name=‟zhangsan‟ and tID > 10000
和执行:
select * from table1 where tID > 10000 and name=‟zhangsan‟
一些人不知道以上两条语句的执行效率是否一样,因为如果简单的从语句先后上看,这两个语句的确是不一样,如果tID是一个聚合索引,那么后一句仅仅从表的
10000条以后的记录中查找就行了;而前一句则要先从全表中查找看有几个name=‟zhangsan‟的,而后再根据限制条件条件tID> 10000来提出查询结果。事实上,这样的担心是不必要的。SQL SERVER中有一个“查询分析优化器”,它可以计算出where子句中的搜索条件并确定哪个索引能缩小表扫描的搜索空间,也就是说,它能实现自动优化。虽然查询优化器可以根据where子句自动的进行查询优化,但有时查询优化器就会不按照您的本意进行快速查询。在查询分析阶段,查询优化器查看查询的每个阶段并决定限制需要扫描的数据量是否有用。如果一个阶段可以被用作一个扫描参数(SARG),那么就称之为可优化的,并且可以利用索引快速获得所需数据。SARG的定义:用于限制搜索的一个操作,因为它通常是指一个特定的匹配,一个值的范围内的匹配或者两个以上条件的AND连接。形式如下:
列名 操作符<常数 或
变量> 或<常数 或变量> 操作符
列名列名可以出现在操作符的一边,而常数或变量出现在操作符的另一边。如:
Name=‟张三‟ 价格>5000 5000<价格 Name=‟张三‟ and 价格>5000
如果一个表达式不能满足SARG的形式,那它就无法限制搜索的范围了,也就是SQL SERVER必须对每一行都判断它是否满足WHERE子句中的所有条件。所以一个索引对于
不满足SARG形式的表达式来说是无用的。
所以,优化查询最重要的就是,尽量使语句符合查询优化器的规则避免全表扫描而使用索引查询。具体要注意的:
1.应尽量避免在where 子句中对字段进行null 值判断,否则将导致引擎放弃使用索引而进行全表扫描,如:
select id from t where num is null 可以在num上设置默认值0,确保表中num列没有null值,然后这样查询:
select id from t where num=0
2.应尽量避免在where 子句中使用!=或<>操作符,否则将引擎放弃使用索引而进行全表扫描。优化器将无法通过索引来确定将要命中的行数,因此需要搜索该表的所有行。
3.应尽量避免在where 子句中使用or 来连接条件,否则将导致引擎放弃使用索引而进行全表扫描,如:select id from t where num=10 or num=20 可以这样查询:
select id from t where num=10 union all select id from t where num=20
4.in 和not in 也要慎用,因为IN会使系统无法使用索引,而只能直接搜索表中的数据。如:
select id from t where num in(1,2,3) 对于连续的数值,能用between 就不要用in 了:
select id from t where num between 1 and 3
5.尽量避免在索引过的字符数据中,使用非打头字母搜索。这也使得引擎无法利用索引。
见如下例子:
SELECT * FROM T1 WHERE NAME LIKE „%L%‟
SELECT * FROM T1 WHERE SUBSTING(NAME,2,1)=‟L‟
SELECT * FROM T1 WHERE NAME LIKE „L%‟
即使NAME
字段建有索引,前两个查询依然无法利用索引完成加快操作,引擎不得不对全表所有数据逐条操作来完成任务。而第三个查询能够使用索引来加快操作。
6.必要时强制查询优化器使用某个索引,如在where 子句中使用参数,也会导致全表扫描。因为SQL只有在运行时才会解析局部变量,但优化程序不能将访问计划的选择推迟到运行时;它必须在编译时进行选择。然而,如果在编译时建立访问计划,变量的值还是未知的,因而无法作为索引选择的输入项。如下面语句将进行全表扫描:
select id from t where num=@num 可以改为强制查询使用索引:
select id from t with(index(索引名)) where num=@num
7.应尽量避免在where 子句中对字段进行表达式操作,这将导致引擎放弃使用索引而进行全表扫描。如:
SELECT * FROM T1 WHERE F1/2=100 应改为:
SELECT * FROM T1 WHERE F1=100*2
SELECT * FROM RECORD WHERE SUBSTRING(CARD_NO,1,4)=‟5378‟
应改为:
SELECT * FROM RECORD WHERE CARD_NO LIKE „5378%‟
SELECT member_number, first_name, last_name FROM members WHERE DATEDIFF(yy,datofbirth,GETDATE()) > 21
应改为:
SELECT member_number, first_name, last_name FROM members WHERE dateofbirth < DATEADD(yy,-21,GETDATE())
即:任何对列的操作都将导致表扫描,它包括数据库函数、计算表达式等等,查询时要尽可能将操作移至等号右边。
8.应尽量避免在where子句中对字段进行函数操作,这将导致引擎放弃使用索引而进行全表扫描。如:
select id from t where substring(name,1,3)='abc'
--name以abc开头的id
select id from t where datediff(day,createdate,'2005-11-30')=0
--„2005-11-30‟生成的id 应改为:
select id from t where name like 'abc%'
select id from t where createdate>=‟2005-11-30′ and createdate<'2005-12-1'
9.不要在where 子句中的“=”左边进行函数、算术运算或其他表达式运算,否则系统将可能无法正确使用索引。
10.在使用索引字段作为条件时,如果该索引是复合索引,那么必须使用到该索引中的第一个字段作为条件时才能保证系统使用该索引,否则该索引将不会被使用,并且应尽可能的让字段顺序与索引顺序相一致。
11.很多时候用exists是一个好的选择:select num from a where num in(select num from b)
用下面的语句替换:
select num from a where exists(select 1 from b where num=a.num)
SELECT SUM(T1.C1)FROM T1 WHERE(
(SELECT COUNT(*)FROM T2 WHERE T2.C2=T1.C2>0)
SELECT SUM(T1.C1) FROM T1WHERE EXISTS(
SELECT * FROM T2 WHERE T2.C2=T1.C2)
两者产生相同的结果,
但是后者的效率显然要高于前者。
因为后者不会产生大量锁定的表扫
描或是索引扫描。
如果你想校验表里是否存在某条纪录,不要用count(*)那样效率很低,而且浪费服务器资源。
可以用EXISTS代替。如:
IF (SELECT COUNT(*) FROM table_name WHERE column_name = „xxx‟)
可以写成:
IF EXISTS (SELECT * FROM table_name WHERE column_name = „xxx‟)
经常需要写一个
T_SQL
语句比较一个父结果集和子结果集,
从而找到是否存在在父结果集
中有而在子结果集中没有的记录,如:
SELECT a.hdr_key FROM hdr_tbl as
—- tbl a 表示tbl用别名a代替
WHERE NOT EXISTS (SELECT * FROM dtl_tbl b WHERE a.hdr_key = b.hdr_key)
SELECT a.hdr_key FROM hdr_tbl a
LEFT JOIN dtl_tbl b ON a.hdr_key = b.hdr_key WHERE b.hdr_key IS NULL
SELECT hdr_key FROM hdr_tbl
WHERE hdr_key NOT IN (SELECT hdr_key FROM dtl_tbl)
三种写法都可以得到同样正确的结果,但是效率依次降低。