Ordered Fractions(模拟 + 排序)

Ordered Fractions

Consider the set of all reduced fractions between 0 and 1 inclusive with denominators less than or equal to N.

Here is the set when N = 5:

0/1 1/5 1/4 1/3 2/5 1/2 3/5 2/3 3/4 4/5 1/1

Write a program that, given an integer N between 1 and 160 inclusive, prints the fractions in order of increasing magnitude.

PROGRAM NAME: frac1

INPUT FORMAT

One line with a single integer N.

SAMPLE INPUT (file frac1.in)

5

OUTPUT FORMAT

One fraction per line, sorted in order of magnitude.

SAMPLE OUTPUT (file frac1.out)

0/1
1/5
1/4
1/3
2/5
1/2
3/5
2/3
3/4
4/5
1/1

 

    题意:

    给出N(1到160),输出 0 ~ 1 最简分数由小到大的排序分数,分母和分子构成的分数由 N 以内的数构成。

 

    思路:

    结构体保存分子和分母,同时用 num 算出分子 / 分母的得数,最后排序输出即可。构成分数过程中判断分子分母是否互质。

 

    AC:

/*    
TASK:frac1    
LANG:C++    
ID:sum-g1    
*/
#include<stdio.h>
#include<algorithm>
using namespace std;

typedef struct
{
    int mol;
    int den;
    double num;
}no;
no node[25000];

int cmp(no a,no b)
{
    return a.num < b.num;
}

int test(int mol,int den)
{
    int t;
    while(den % mol)
    {
        t = den % mol;
        den = mol;
        mol = t;
    }
    return mol;
}

int main()
{
    freopen("frac1.in","r",stdin);        
    freopen("frac1.out","w",stdout);
    int n,sum = 2;
    scanf("%d",&n);
    node[0].mol = 0,node[0].den = 1,node[0].num = 0;
    node[1].mol = 1,node[1].den = 1,node[1].num = 1;
    for(int i = 2;i <= n;i++)
        for(int j = 1;j < i;j++)
    {
        if(test(j,i) == 1)
        {
            node[sum].mol = j;
            node[sum].den = i;
            node[sum].num = (j * 1.0) / (i * 1.0);
            sum++;
        }
    }
    sort(node,node + sum,cmp);
    for(int i = 0;i < sum;i++)
        printf("%d/%d\n",node[i].mol,node[i].den);
    return 0;
}

 

 

你可能感兴趣的:(action)