Hadoop Yarn上实现Hama BSP计算应用

1. 引言

hadoop 0.23系列后,就对Map/Reduce进行了完全重写,把原有的MR计算框架替代成了新一代Yarn计算框架- Yarn。Yarn有一点类似于Mesos(它们之间的对比请看如下链接How does YARN compare to Mesos?),运行在hdfs之上,用JAVA写的计算资源管理框架。而Map/Reduce被看成是一个成熟的应用框架运行在Yarn计算框架之上。我们可以在Yarn上开发各种各样的计算应用。业界也开始着手在Yarn上开发自己相应的计算应用。例如:Tez, Hama,storm, kitten等,详情可以参考董西成大哥的一篇文章<汇总运行在Hadoop YARN上的开源系统

 

其实我们了解Yarn的工作原理,并且熟悉其工作流程和运行机制。我们自己也可以实现相应的hadoop计算应用。在hadoop的官方文章里也写了一个thread,来介绍如何写一个yarn应用: Hadoop MapReduce Next Generation - Writing YARN Applications。这个thread主要简单讲了一下如何写一个简单的client, container和appmaster并且与其它节点(RM, NM)进行通信,完成所需任务。

 

Hama是一个hadoop生态系统中的图计算和迭代计算框架,有一点类似于google的号称是新三架马车之一的Pregel。在Pregel论文发表之时,google就有近30%的计算采用Pregel计算框架来完成。它们两者的主要思想就是实现一个BSP模型。这类模型适合大规模迭代的图计算,这在我之前的一篇博文中提到Hama Kmeans Clustering学习

 

hama本来就可以在独立地运行如果我们称传统的hadoop版本是包含hdfs和mapreduce的话,那么可以称hama是hdfs和bsp的组合。它同时也实现了yarn框架,能够使bsp应用运行在yarn之上。

 

据说,Hama是除了map/reduce应用之外,第一个在yarn之上实现自己的应用。我们将以它为例子来介绍如何写出自己个性化的yarn应用,因为其比hadoop自带的MR2 yarn实现更加简单,更加容易学习。

  

 2. hama yarn应用

正因为hama既能够运行在传统的hadoop系统之上,也能够运行的yarn之上,因此它在写yarn应用实现时,其序列/反序列化机制既用了那种传统的Writable,也有protobuf这类工具。client与appmaster是用Writable机制来获取超步superStep信息,而client与RM通信是用后者提交任务或查看任务的状态信息。

2.1. 用户创建Job

如果hama做一个单机上面执行,那么只需要用构造BSPJob,进而提交任务。如果在yarn中执行,就只需要把BSPJob换成YarnBSPJob即可以在yarn上运行该任务。如下是构造BSP任务代码。

/**
   * Creates a basic job with sequencefiles as in and output.
   */
  public static BSPJob createJob(Configuration cnf, Path in, Path out,
      boolean textOut) throws IOException {
    HamaConfiguration conf = new HamaConfiguration(cnf);
    BSPJob job = new BSPJob(conf, KMeansBSP.class);
    //用于yarn框架下,请把上面一行注释掉,再把下一行取消注释
    //BSPJob job = new YarnBSPJob(conf, KMeansBSP.class);
    //此处初始化一堆job参数, 省略...
    return job;
  }

 

2.2. YARNBSPJob

要使BSP应用在Yarn上运行,需要有client向resourcemanager提交相应任务。YarnBSPJob就是做类似的工作。YarnBSPJob建立了与resourcemanager的代理applicationsManager,并且与之通信。

 

public class YARNBSPJob extends BSPJob {

  private static final Log LOG = LogFactory.getLog(YARNBSPJob.class);

  private static volatile int id = 0;

  private YARNBSPJobClient submitClient;  // 通过submitClient.launchJob提交任务
  private BSPClient client; //
  private boolean submitted;  //看该job是否提交 
  private ApplicationReport report; // 应用的汇报信息
  private ClientRMProtocol applicationsManager;  // 与resourcemanager通信的代理对象
  private YarnRPC rpc;  // 创建一个与rm交互的客户端代理 

  public YARNBSPJob(HamaConfiguration conf) throws IOException {
    super(conf);
    submitClient = new YARNBSPJobClient(conf);
    YarnConfiguration yarnConf = new YarnConfiguration(conf);
    this.rpc = YarnRPC.create(conf);  //创建一个rm代理对象,准备与rm通信
    InetSocketAddress rmAddress = NetUtils.createSocketAddr(yarnConf.get(
        YarnConfiguration.RM_ADDRESS, YarnConfiguration.DEFAULT_RM_ADDRESS));
    LOG.info("Connecting to ResourceManager at " + rmAddress);

    this.applicationsManager = ((ClientRMProtocol) rpc.getProxy(
        ClientRMProtocol.class, rmAddress, conf));  //与rm建立代理连接
  }
  //省略...
}
 

 2.3. 提交应用launchJob

 在初始化RM代理之后,对该任务的相关class,xml等文件进行打jar包操作,然后把这jar包上传到hdfs上面去,再向RM提交该Job。提交BSP任务需要首先向RM请求新的application资源。

GetNewApplicationRequest request = Records
        .newRecord(GetNewApplicationRequest.class);
    GetNewApplicationResponse response = job.getApplicationsManager()
        .getNewApplication(request);
    id = response.getApplicationId();
    LOG.debug("Got new ApplicationId=" + id);

 再先产生一个ContainerLaunchContext对象,填充一些环境参数(环境变量env map,job文件所在本地路径localResources,appmaster的container启动命令command,设置内存参数capability)之后,然后会构造ApplicationSubmissionContext对象(appid, appname, appmaster container上述配置)构造完再向RM提交应用。

// Create a new ApplicationSubmissionContext
    ApplicationSubmissionContext appContext = Records
        .newRecord(ApplicationSubmissionContext.class);
    // set the ApplicationId
    appContext.setApplicationId(this.id);
    // set the application name
    appContext.setApplicationName(job.getJobName());

    // Create a new container launch context for the AM's container
    ContainerLaunchContext amContainer = Records
        .newRecord(ContainerLaunchContext.class);

    // Define the local resources required
    Map<String, LocalResource> localResources = new HashMap<String, LocalResource>();
    // Lets assume the jar we need for our ApplicationMaster is available in
    // HDFS at a certain known path to us and we want to make it available to
    // the ApplicationMaster in the launched container
    //初始化localResources, 省略...
    // Set the local resources into the launch context
    amContainer.setLocalResources(localResources);

    // Set up the environment needed for the launch context
    Map<String, String> env = new HashMap<String, String>();
    // Assuming our classes or jars are available as local resources in the
    // working directory from which the command will be run, we need to append
    // "." to the path.
    // By default, all the hadoop specific classpaths will already be available
    // in $CLASSPATH, so we should be careful not to overwrite it.
    String classPathEnv = "$CLASSPATH:./*:";
    env.put("CLASSPATH", classPathEnv);
    amContainer.setEnvironment(env);

    // Construct the command to be executed on the launched container
  // 产生能够启动appmaster的命令
    String command = "${JAVA_HOME}"
        + "/bin/java -cp "
        + classPathEnv
        + " "
        + BSPApplicationMaster.class.getCanonicalName()
        + " "
        + submitJobFile.makeQualified(fs.getUri(), fs.getWorkingDirectory())
            .toString() + " 1>" + ApplicationConstants.LOG_DIR_EXPANSION_VAR
        + "/stdout" + " 2>" + ApplicationConstants.LOG_DIR_EXPANSION_VAR
        + "/stderr";

    LOG.debug("Start command: " + command);
    amContainer.setCommands(Collections.singletonList(command));

    Resource capability = Records.newRecord(Resource.class);
    // we have at least 3 threads, which comsumes 1mb each, for each bsptask and
    // a base usage of 100mb
    capability.setMemory(3 * job.getNumBspTask()
        + getConf().getInt("hama.appmaster.memory.mb", 100));
    LOG.info("Set memory for the application master to "
        + capability.getMemory() + "mb!");
    amContainer.setResource(capability);

    // Set the container launch content into the ApplicationSubmissionContext
    appContext.setAMContainerSpec(amContainer);

    // Create the request to send to the ApplicationsManager
    SubmitApplicationRequest appRequest = Records
        .newRecord(SubmitApplicationRequest.class); //封装提交请求
    appRequest.setApplicationSubmissionContext(appContext);
    job.getApplicationsManager().submitApplication(appRequest);//提交application应用请求

 当job向RM提交后,我们就可以向RM获得applicationMaster的运行状态。

GetApplicationReportRequest reportRequest = Records
        .newRecord(GetApplicationReportRequest.class);
    reportRequest.setApplicationId(id);
    while (report == null || report.getHost().equals("N/A")) {
      GetApplicationReportResponse reportResponse = job
          .getApplicationsManager().getApplicationReport(reportRequest);
      report = reportResponse.getApplicationReport();//获得appmaster的运行状态,包括:运行机器,端口等。
      try {
        Thread.sleep(1000L);
      } catch (InterruptedException e) {
        LOG.error(
            "Got interrupted while waiting for a response report from AM.", e);
      }
    }

 2.4. Hadoop ResourceManager启动Job

客户端向ResourceManager提交请求后,RM最后通过ClientRMService直接调用RMapplication事件处理器来同步处理,而不是采用yarn提供的异步dispatcher来处理,这样的好处是客户端会立即知道提交的Job是不是初始化完成并启动成功。在这其中,ClientRMService实现了ClientRMProtocol服务,它会加载相关参数(yarn.resourcemanager.address)开启服务端口(默认端口:8040)来接收服务

 

// 在submitApplication里面,直接调用RMAppManager.handle来同步处理请求
rmAppManager.handle(new RMAppManagerSubmitEvent(submissionContext, System
          .currentTimeMillis()));
但是ClientRMService在submitApplication时先创建一个RMAppImpl实例,然后通过AsyncDispatcher来异步处理RMAppEvent事件。
// Create RMApp
      application = new RMAppImpl(applicationId, rmContext,
          this.conf, submissionContext.getApplicationName(), user,
          submissionContext.getQueue(), submissionContext, clientTokenStr,
          appStore, this.scheduler,
          this.masterService, submitTime);
//省略...
// All done, start the RMApp
      this.rmContext.getDispatcher().getEventHandler().handle(
          new RMAppEvent(applicationId, RMAppEventType.START));
 
ResourceManager是一个大服务,它包含了各种各样,形形色色的小服务,在设计模式里,采用的是一种典型的组合模式。它在初始化时会其rmDispatcher注册事件类型RMAppEventType, RMAppAttemptEventType等。
    // Register event handler for RmAppEvents
    this.rmDispatcher.register(RMAppEventType.class,
        new ApplicationEventDispatcher(this.rmContext));
    // Register event handler for RmAppAttemptEvents
    this.rmDispatcher.register(RMAppAttemptEventType.class,
        new ApplicationAttemptEventDispatcher(this.rmContext));
因此RMAppEvent事件会被ApplicationEventDispatcher来消化处理,ApplicationEventDispatcher会通过RMAppImpl.handle来修改该RMAppImpl的状态机为appmaster container节点创建RMAppAttemptImpl。同样,RMAppAttemptImp也维护着一个自有的状态机,根据状态机的当前状态和迁移状态来执行相应的逻辑。当 RMAppAttemptImp进入allocated状态时,就会向某个NodeManager提交创建container
下面是org.apache.hadoop.yarn.server.resourcemanager.amlauncher.AMLauncher.launch()向某个NM提交启动AMContainer请求。
 
private void launch() throws IOException {
    connect();
    //application.getMasterContainer()给出的是已经分配到某NM上运行的container,
    //它里面有相应NM的nodeId。
    ContainerId masterContainerID = application.getMasterContainer().getId();
    ApplicationSubmissionContext applicationContext =
      application.getSubmissionContext();
    LOG.info("Setting up container " + application.getMasterContainer() 
        + " for AM " + application.getAppAttemptId());  
    //准备好启动appmaster container时所需要的参数
    ContainerLaunchContext launchContext =
        createAMContainerLaunchContext(applicationContext, masterContainerID);
    StartContainerRequest request = 
        recordFactory.newRecordInstance(StartContainerRequest.class);
    request.setContainerLaunchContext(launchContext);
    containerMgrProxy.startContainer(request); //通过NM代理containerMgrProxy向某一个NM提交启动container的请求
    LOG.info("Done launching container " + application.getMasterContainer() 
        + " for AM " + application.getAppAttemptId());
  }

2.5 Hadoop NodeManager启动Job 

在NodeManager一端接收到startContainer请求,则会对每个请求产生两个带有状态机的对象:ContainerImpl和ApplicationImpl。  
    //创建container状态机
    Container container = new ContainerImpl(getConfig(), this.dispatcher,
        launchContext, credentials, metrics);
    ApplicationId applicationID = 
        containerID.getApplicationAttemptId().getApplicationId();
    if (context.getContainers().putIfAbsent(containerID, container) != null) {
      NMAuditLogger.logFailure(launchContext.getUser(), 
          AuditConstants.START_CONTAINER, "ContainerManagerImpl",
          "Container already running on this node!",
          applicationID, containerID);
      throw RPCUtil.getRemoteException("Container " + containerID
          + " already is running on this node!!");
    }

    //创建一个application
    Application application =
        new ApplicationImpl(dispatcher, this.aclsManager,
            launchContext.getUser(), applicationID, credentials, context);
    if (null ==
        context.getApplications().putIfAbsent(applicationID, application)) {
      LOG.info("Creating a new application reference for app "
          + applicationID);
      dispatcher.getEventHandler().handle(
          new ApplicationInitEvent(applicationID, container
              .getLaunchContext().getApplicationACLs()));
    }

    // TODO: Validate the request
    dispatcher.getEventHandler().handle(
        new ApplicationContainerInitEvent(container));

 最后通过org.apache.hadoop.yarn.server.nodemanager.containermanager.launcher.ContainersLauncher.handle(ContainersLauncherEvent)来创建一个新的container进程。

 

 

switch (event.getType()) {
      case LAUNCH_CONTAINER:
        Application app =
          context.getApplications().get(
              containerId.getApplicationAttemptId().getApplicationId());
        //准备好启动一个新的Container环境变量和相关参数 
        ContainerLaunch launch = new ContainerLaunch(getConfig(), dispatcher,
            exec, app, event.getContainer(), dirsHandler);
        running.put(containerId,
            new RunningContainer(containerLauncher.submit(launch), 
                launch)); //通过containerLauncher.submit(launch)创建一个新container进程,这个是一个阻塞进程,直到子进程退出。
        break;
      case CLEANUP_CONTAINER:
        //省略...
}
 

 

 3. Hama AppMaster实现

 

 Hama的实现了一个appmaster是org.apache.hama.bsp.BSPApplicationMaster。它的构造函数如下:

 

private BSPApplicationMaster(String[] args) throws Exception {
    // 传进来的参数是jobconf的路径名
    if (args.length != 1) {
      throw new IllegalArgumentException();
    }

    this.jobFile = args[0];
    this.localConf = new YarnConfiguration();
    //加入用户提交 的参数
    this.jobConf = getSubmitConfiguration(jobFile);
    //bsp的名称
    this.applicationName = jobConf.get("bsp.job.name",
        "<no bsp job name defined>");
    if (applicationName.isEmpty()) {
      this.applicationName = "<no bsp job name defined>";
    }
    //获得appAttemptId
    this.appAttemptId = getApplicationAttemptId();
    //产生一个yarnRPC,该RPC是用于yarn框架,在hama里主要用于产生一个RM代理用于与resourceManager进行通信。
    this.yarnRPC = YarnRPC.create(localConf);
    this.clock = new SystemClock();
    this.startTime = clock.getTime();

    this.jobId = new BSPJobID(appAttemptId.toString(), 0);
    //appmaster开启一个端口,与客户端进行通信
    this.hostname = BSPNetUtils.getCanonicalHostname();
    this.clientPort = BSPNetUtils.getFreePort(12000);

    // start our synchronization service 启动BSP同步服务,该服务会通过zookeeper server来管理服务的同步,
    startSyncServer();
    // 启动提供给客户端使用的BSPClient clientServer, 与其它bsp task container进行通信的BSPPeerProtocol taskServer,同时会设置hama.umbilical.address为hostname:taskServerPort
    startRPCServers();
    /*
     * Make sure that this executes after the start the RPC servers, because we
     * are readjusting the configuration.
     */
    //把上面重新改动的配置写到hdfs文件里面
    rewriteSubmitConfiguration(jobFile, jobConf);
    //把在客户端分好的split list从hdfs上读出来
    String jobSplit = jobConf.get("bsp.job.split.file");
    splits = null;
    if (jobSplit != null) {
      DataInputStream splitFile = fs.open(new Path(jobSplit));
      try {
        splits = BSPJobClient.readSplitFile(splitFile);
      } finally {
        splitFile.close();
      }
    }
    //产生一个appmaster与resourceManager通信代理 
    this.amrmRPC = getYarnRPCConnection(localConf);
    registerApplicationMaster(amrmRPC, appAttemptId, hostname, clientPort,
        "http://localhost:8080");
  }
 

 

startRPCServers()方法创建了两个RPC server,这些server中的其中一个是用来与提交任务的clientServer,接口类为BSPClient,它有一个getCurrentSuperStep()方法用于获得该job已经运行到哪一超步了;另外一个taskServer用于与所属这个job的任务节点进行通信,接口类是BSPPeerProtocol,其里面有两个重要的方法:getTask(用于获得该节点的任务信息,用于task节点初始化)和statusUpdate(更新task节点的状态)。

 

当初始化appmaster后,会向RM申请集群的资源信息,RM计算好该分配的资源信息后,会返回一堆NM列表, appmaster会在这些节点列表上启动其相应的BSP Task。

 

@Override
  public JobState startJob() throws Exception {

    //初始化列表,产生的数量是bsp.peers.num个
    this.allocatedContainers = new ArrayList<Container>(numBSPTasks);
    while (allocatedContainers.size() < numBSPTasks) {
      //向resourceManager申请bsp task container节点的资源。createBSPTaskRequest方法是请求资源ResourceRequest列表;releasedContainers是该job已经不再使用,需要释放的containerId列表。
      AllocateRequest req = BuilderUtils.newAllocateRequest(
          appAttemptId,
          lastResponseID,
          0.0f,
          createBSPTaskRequest(numBSPTasks - allocatedContainers.size(),
              taskMemoryInMb, priority), releasedContainers);
      //向RM申请资源,启动numBSPTasks个bsp container任务
      AllocateResponse allocateResponse = resourceManager.allocate(req);
      AMResponse amResponse = allocateResponse.getAMResponse();
      LOG.info("Got response! ID: " + amResponse.getResponseId()
          + " with num of containers: "
          + amResponse.getAllocatedContainers().size()
          + " and following resources: "
          + amResponse.getAvailableResources().getMemory() + "mb");
      this.lastResponseID = amResponse.getResponseId();

      // availableResources = amResponse.getAvailableResources();
      this.allocatedContainers.addAll(amResponse.getAllocatedContainers());
      LOG.info("Waiting to allocate "
          + (numBSPTasks - allocatedContainers.size()) + " more containers...");
      Thread.sleep(1000l);
    }
    //RM同时把numBSPTasks个container任务分配给了这个application。
    LOG.info("Got " + allocatedContainers.size() + " containers!");

    int id = 0;
    for (Container allocatedContainer : allocatedContainers) {
      LOG.info("Launching task on a new container." + ", containerId="
          + allocatedContainer.getId() + ", containerNode="
          + allocatedContainer.getNodeId().getHost() + ":"
          + allocatedContainer.getNodeId().getPort() + ", containerNodeURI="
          + allocatedContainer.getNodeHttpAddress() + ", containerState"
          + allocatedContainer.getState() + ", containerResourceMemory"
          + allocatedContainer.getResource().getMemory());

      // Connect to ContainerManager on the allocated container
      //建立与container所属的NM进行通信。
      String cmIpPortStr = allocatedContainer.getNodeId().getHost() + ":"
          + allocatedContainer.getNodeId().getPort();
      InetSocketAddress cmAddress = NetUtils.createSocketAddr(cmIpPortStr);
      //NM代理 
      ContainerManager cm = (ContainerManager) yarnRPC.getProxy(
          ContainerManager.class, cmAddress, conf);
      //构造一个BSPTaskLauncher用于启动container
      BSPTaskLauncher runnableLaunchContainer = new BSPTaskLauncher(id,
          allocatedContainer, cm, conf, jobFile, jobId);

      launchers.put(id, runnableLaunchContainer);
      //启动container。在这方法里调用setupContainer方法把JAVA命令行,环境变量,BSP相关参数都传给NM,调用NM的containerManager服务(org.apache.hadoop.yarn.api.ContainerManager.startContainer(StartContainerRequest))去启动一个子进程BSPRunner container,并且获得该container的状态信息。
      runnableLaunchContainer.start();
      completionQueue.add(runnableLaunchContainer);
      id++;
    }
    LOG.info("Waiting for tasks to finish...");
    state = JobState.RUNNING;
    int completed = 0;
    while (completed != numBSPTasks) {
      for (BSPTaskLauncher task : completionQueue) {
        BSPTaskStatus returnedTask = task.poll();  //从每个runnableLaunchContainer中获得状态信息。
        // if our task returned with a finished state
        if (returnedTask != null) {
          if (returnedTask.getExitStatus() != 0) {
            LOG.error("Task with id \"" + returnedTask.getId() + "\" failed!");
            state = JobState.FAILED;
            return state;
          } else {
            LOG.info("Task \"" + returnedTask.getId()
                + "\" sucessfully finished!");
            completed++;
            LOG.info("Waiting for " + (numBSPTasks - completed)
                + " tasks to finish!");
          }
          cleanupTask(returnedTask.getId());
        }
      }
      Thread.sleep(1000L);
    }

    state = JobState.SUCCESS;
    return state;
  }
 

4. Container启动流程

在Hama yarn框架的实现里,appmaster是一个特殊的container,它启动的方式跟普通的container一样,事实上其它的yarn实现也是通过这种流程。如下列出两类container进程的启动流程。
  1. 普通container:Appmaster先向RM申请资源,然后appmaster向构造java命令等环境参数去通知NM去fork一个子进程setup任务节点。
  2. appmaster container:client端先构造java命令等环境参数,然后去向RM申请appmaster container资源,RM通知NM fork一个子进程appmaster,启动这个appmaster的节点信自己会返回给RM和client。

 

 

 

 

 

 

 

 

你可能感兴趣的:(hadoop)