- HDMI 接收芯片——MS7200
优森美
单片机音视频
MS7200是一款HDMI接收芯片,兼容HDMI1.4b及HDMI1.4b下的视频3D传输格式。可以支持的最高分辨率高达4K30Hz,最高采样率达到300MHz.MS7200支持YUV和RGB之间的色彩空间转换,数字接口支持YUV以及RGB格式输出。MS7200的IIS接口以及S/PDIF接口支持高清音频的传输,其中S/PDIF接口既可以兼容IEC61937标准下的压缩音频传输,同时还支持高比特音
- HIOKI 日置 DM7275 是7 位半高精度直流电压计详细介绍
JP19250538373
测试工具
HIOKI日置DM7275是一款7位半高精度直流电压计,主要用于锂电池检测、电子元件测试及生产线自动化测量等领域。以下是其核心信息整理:核心功能与特点高精度测量1年精度20ppm(10V量程),长期稳定性接近标准源,适合老化试验等长期监测场景。宽量程覆盖:支持100mV至1000V五档量程,分辨率达10nV(100mV量程)至100μV(1000V量程)。抗干扰设计悬浮式结构:抑制噪声干扰,AC/
- 视觉Transformer架构的前沿优化技术与高效部署
点我头像干啥
Ai深度学习神经网络计算机视觉
引言近年来,Transformer架构在自然语言处理(NLP)领域取得了巨大成功,逐渐成为深度学习的主流模型之一。随着研究的深入,Transformer架构也开始在计算机视觉领域崭露头角,尤其是在图像分类、目标检测和图像生成等任务中表现出色。然而,视觉Transformer(VisionTransformer,ViT)在计算效率和内存消耗方面面临巨大挑战,尤其是在处理高分辨率图像时。为了应对这些挑
- 鸿蒙栅格布局组件 GridRow 自学指南
harmonyos-next
在日常的鸿蒙应用开发工作里,我时常面临布局设计的挑战。不同设备的分辨率、宽高比千差万别,若采用传统的固定布局,在某些设备上可能出现组件挤压、留白过多甚至显示错乱的尴尬局面。而GridRow组件宛如一把精准的手术刀,能够巧妙地切割屏幕空间,构建出规整且灵活多变的布局架构,轻松化解多尺寸适配难题。为了帮助同行们少走弯路,快速掌握这一强大工具,我决定将自己的学习心得整理成这篇自学指南。一、GridRow
- 【OpenPose常用命令】Linux系统中运行openpose的常用命令
却道海棠
linux运维服务器
文章目录OpenPose简介OpenPose中一些重要的参数及其功能[模型训练与优化][网络结构的作用]OpenPose使用的网络结构【*pose_pairs】【工作原理示例】【*置信度】【置信度的决定方式】【置信度的大小及其影响】【热图峰值】【在OpenPose中的应用】【示例】[默认设置和修改方式示例]1.`net_resolution`:网络分辨率2.`number_people_max`:
- 利用 adb 对手机进行屏幕分辨率设置
SuperCreators
测试
在公司中有时候会缺少对应屏幕分辩率的测试,一般线上app会因为屏幕分辨率出现各种奇形怪状的问题。利用adb设置屏幕分辨率来对app进行分辨率兼容测试。adb基础命令:1、启动adb服务adbstart-server2、终止adb服务adbkill-server3、进入adb运行环境(Android系统内核是Linux,所以许多Linux系统的命令在Android系统中都可以使用)adbshell4
- 音视频 一 看书的笔记 基础视频知识
魑魅魍魉都是鬼
音视频笔记
视频编码:通过特定的压缩技术,将某个视频格式文件转换成另外一种视频格式文件目的:应该是使保存/传输等更节省空间带宽流量等等等等复杂就是为了节俭O(∩_∩)O~~例如现在常用滴:以下是总结这个的编码格式H.264(AVC)编码效率高视频画质好压缩技术的效率高网络适应能力强兼容性好编码选项少编码计算复杂度高,解码复杂度高对播放的硬件系统要求高会产生特别大体积文件压缩视频的效率不高不支持4K以上分辨率的
- MS7200宏晶微HDMI 接收芯片,兼容HDMI1.4b 及 HDMI 1.4b 下的视频 3D 传输格式 外挂MCU,1路HDMI输入,1路Digital输出 主要用于 HDMI/USB视频转换
li15817260414
单片机音视频嵌入式硬件
描述MS7200是一款HDMI接收芯片,兼容HDMI1.4b及HDMI1.4b下的视频3D传输格式。可以支持的最高分辨率高达4K30Hz,最高采样率达到300MHz.MS7200支持YUV和RGB之间的色彩空间转换,数字接口支持YUV以及RGB格式输出。MS7200的IIS接口以及S/PDIF接口支持高清音频的传输,其中S/PDIF接口既可以兼容IEC61937标准下的压缩音频传输,同时还支持高比
- 一键浪漫的回忆:微软开源的修复工具!
架构文摘JGWZ
学习工具开源软件
项目介绍“Bringing-Old-Photos-Back-to-Life”是一款由微软开发的创新软件解决方案,它利用人工智能技术来修复和增强老旧照片的质量。这款工具可以解决老旧照片中常见的问题,如褪色、低分辨率以及物理损坏(如划痕和撕裂)。通过采用先进的图像处理技术,“Bringing-Old-Photos-Back-to-Life”能够显著改善这些照片的整体外观,使其看起来几乎就像是用现代设备
- Pytorch实现之对称卷积神经网络结构实现超分辨率
这张生成的图像能检测吗
优质GAN模型训练自己的数据集pytorchcnn人工智能生成对抗网络神经网络深度学习
简介简介:针对传统的超分辨率重建技术所重建的图像过于光滑且缺乏细节的问题,作者提出了一种改进的生成对抗图像超分辨率网络。该改进方法基于深度神经网络,其生成模型包含多层卷积模块和多层反卷积模块,其中在感知损失基础上增加了跳层连接和损失函数。该判别模型由多层神经网络组成,其损失函数基于生成式对抗网络生成的判别模型损失函数。论文题目:ImageSuper-resolutionReconstruction
- YOLOv11改进 | 注意力篇 | YOLOv11引入24年ECCV的自调制特征聚合注意力模块(SMFA),并构建C2PSA_SMFA
小李学AI
YOLOv11有效涨点专栏YOLO深度学习人工智能计算机视觉目标检测机器学习神经网络
1.SMFA介绍1.1摘要:基于Transformer的图像复原方法由于Transformer的自注意(self-attention,SA)特性能够更好地挖掘非局部信息,从而获得更好的高分辨率图像重建效果,因此具有重要的应用价值。然而,关键点积SA需要大量的计算资源,这限制了其在低功耗器件中的应用。此外,模拟退火机制的低通特性限制了其捕获局部细节的能力,从而导致平滑的重建结果。针对该问题,该文提出
- Vidu 5.0 视频生成模型深度解析
Liudef06
AI生成视频音视频计算机视觉人工智能深度学习
Vidu5.0视频生成模型深度解析(2025年3月)一、核心技术架构多模态动态建模基于DiT(DiffusionTransformer)架构:结合3D时空注意力机制,实现动态场景的精准建模。视频生成能力:支持生成最长16秒、1080P分辨率的视频,并具备多镜头切换能力。物理特性模拟:模拟真实物理特性,如光影反射、流体运动。角色一致性控制三视图角色生成:用户上传角色三视图图片,模型可生成360度动态
- 农业无人机:无人机图像处理_(5).无人机图像在精准农业中的应用
zhubeibei168
无人机无人机图像处理人工智能游戏引擎人机交互农业检测
无人机图像在精准农业中的应用1.引言在精准农业中,无人机图像处理技术发挥着重要作用。通过无人机采集的高分辨率图像,农民和农业研究人员可以实时监测作物生长情况、土壤湿度、病虫害状况等,从而实现精准管理。本节将详细介绍无人机图像在精准农业中的应用,包括图像采集、图像预处理、图像分析和数据可视化等环节。2.无人机图像采集无人机图像采集是精准农业图像处理的第一步。无人机配备有高分辨率相机,可以在空中对农田
- Tailwind CSS 学习笔记(二)
SSHSHLSH
css前端
一、辅助工具在vscode中使用TailwindCSS,可安装官方提供的TailwindCSSIntelliSense插件,该插件可以提供自动补全、语法高亮及检查功能。二、TailwindCSS中的基本单位CSS中常见单位1、绝对单位绝对单位的值固定,不依赖其他元素或设备特性,通常用于打印或固定尺寸场景:像素(px):表示屏幕上的物理像素点,是绝对单位中最常用的。但实际物理尺寸受屏幕分辨率(dpi
- Iptv机顶盒之epg界面h5开发注意事项
莱城意乱
tvhtml5javascripthtml智能电视
发现机顶盒上内置的浏览器好像都是阉割版的,很多基本的样式或者js写法用不了。以下为注意事项(不足之处还望指点,谢谢):一般机顶盒内置的浏览器都是ie8一下的版本浏览器的分辨率都是1280*720不允许出现css新特性,单位都是px,最好用绝对定位position,不用考虑电视屏幕尺寸的问题能用的css属性:position、width、height、top、right、bottom、left、fo
- MATLAB图像处理:64级小波变换与边缘检测实战
ELSON麦香包
本文还有配套的精品资源,点击获取简介:小波变换是数字信号处理中强大的工具,特别适用于图像分析和处理。本资料包着重探讨如何利用MATLAB进行64级小波变换以实现图像的方向性和边缘检测。通过分析小波变换的多分辨率特性以及其在提取图像细节和边缘信息中的优势,本课程将指导学生通过实际操作步骤,包括图像加载、小波分解、边缘定位及图像重构,来掌握小波变换和边缘检测算法。学生将学习如何使用MATLAB中的wa
- Harmonyos Next,一多开发之媒体查询
给我狠狠的写
媒体
媒体查询媒体查询常用于下面两种场景:针对设备和应用的属性信息(比如显示区域、深浅色、分辨率),设计出相匹配的布局。当屏幕发生动态改变时(比如分屏、横竖屏切换),同步更新应用的页面布局。核心用法咱们分2个角度来看看如何使用媒体查询整合步骤导入模块--->创建监听器--->注册监听器--->移除监听器2.调整媒体查询条件//1.导入模块import{mediaquery}from'@kit.ArkUI
- QT字体显示
走路打滑
QTqt字体显示大小
环境:QT5.63字体显示大小问题现象在不同分辨率的LCD屏幕上进行字体的显示时,会出现大小不一的情况。通常在高分辨率的屏幕上正常大小的字体放到低分辨率屏幕上显示就会看着很小。解决方法记录:无论是QLable控件,各种button控件等等,所显示的字体都可以通过setFont函数去指定设置好的QFont对象。从而去改变所显示文本的属性Qt中的字体QFont定义字体大小是有两种方式,一种是Point
- 鸿蒙相机开发实战:从设备适配到性能调优 —— 我的 ArkTS 录像功能落地手记(API 15)
李游Leo
harmonyos-nextharmonyos鸿蒙harmonyos数码相机华为
引言:为什么我要写这份开发指南?作为一名老技术,最近特别喜欢研究鸿蒙相机功能,而且目前已经更新到API15了,那么咱们更要好好研究一下。而且从手持云台到车载记录仪,每个项目都面临独特挑战:车载场景的高温稳定性、可穿戴设备的低功耗限制、多设备分辨率适配的玄学……这些痛点促使我重新梳理HarmonyOS相机开发的技术脉络——这正是本文的起源。比如之前在一款运动相机项目中,我们最初直接复用Android
- 大屏自适应终极方案:基于比例缩放的完美适配实践(Vue3版)
FFF-X
html5javascript
需求背景在数据可视化大屏开发中,我们常面临这样的挑战:如何让1920*1080的设计稿在不同分辨率设备上完美呈现?传统的响应式布局难以应对复杂的大屏元素排布,本文介绍一种基于CSS3变换的终极适配方案实现思路本方案的核心是动态比例缩放,通过以下关键步骤实现:基准比例锁定:基于设计稿宽高比(16:9)建立基准比例视口实时检测:通过resize事件监听窗口变化智能比例判断:当视口更宽时:保持高度基准,
- Description of a Poisson Imagery Super Resolution Algorithm 论文阅读
青铜锁00
论文阅读Radar论文阅读
DescriptionofaPoissonImagerySuperResolutionAlgorithm1.研究目标与意义1.1研究目标1.2实际意义2.创新方法与模型2.1核心思路2.2关键公式与推导2.2.1贝叶斯框架与概率模型2.2.2MAP估计的优化目标2.2.3超分辨率参数α2.3对比传统方法的优势3.实验验证与结果3.1实验设计3.2关键结果4.未来研究方向(实波束雷达领域)4.1挑战
- RTX 4090旗舰显卡效能实战剖析
智能计算研究中心
其他
内容概要作为NVIDIA新一代旗舰显卡,RTX4090凭借AdaLovelace架构的革新设计,在4K/8K分辨率下的游戏与创作场景中展现了突破性表现。本文将通过多维度实测数据,系统解析其核心性能:首先聚焦8K游戏帧率与光线追踪效果的实战表现,结合DLSS3.0技术的动态对比,揭示超分辨率技术对高负载场景的优化逻辑;随后深入探讨24GBGDDR6X显存在视频渲染与AI运算中的效率边界,同步验证显存
- 【第1章>第6节】CMAC小脑模型神经网络的理论学习与MATLAB仿真
fpga和matlab
#第1章·神经网络学习matlabCMAC小脑模型神经网络人工智能
目录1.使用软件和版本2.CMAC小脑模型神经网络概述2.1CMAC网络结构2.2CMAC地址映射2.3学习过程3.CMAC网络的MATLAB编程实现4.分辨率,重叠度,学习率对CMAC网络的训练性能影响分析4.1分辨率4.2重叠度4.3学习率5.视频操作步骤演示欢迎订阅FPGA/MATLAB/Simulink系列教程《★教程1:matlab入门100例》《★教程2:fpga入门100例》《★教程
- 鸿蒙相机开发实战:从设备适配到性能调优 —— 我的 ArkTS 录像功能落地手记(API 15)
harmonyos
引言:为什么我要写这份开发指南?作为一名老技术,最近特别喜欢研究鸿蒙相机功能,而且目前已经更新到API15了,那么咱们更要好好研究一下。而且从手持云台到车载记录仪,每个项目都面临独特挑战:车载场景的高温稳定性、可穿戴设备的低功耗限制、多设备分辨率适配的玄学……这些痛点促使我重新梳理HarmonyOS相机开发的技术脉络——这正是本文的起源。比如之前在一款运动相机项目中,我们最初直接复用Android
- 生成对抗网络(GAN)的高级变体及在图像生成领域的创新实践
算法探索者
生成对抗网络计算机视觉人工智能
摘要生成对抗网络(GAN)自提出以来,在诸多领域取得了显著进展,尤其是在图像生成方面展现出强大的潜力。本文深入探讨了GAN的多种高级变体,如CycleGAN、StyleGAN等,详细分析它们在结构设计、训练机制上的创新之处,阐述其在生成高分辨率、多样化图像时具备的独特优势,并结合丰富的实际案例,展示这些变体在图像生成领域的卓越应用成果,为相关研究与应用提供全面且深入的参考。一、引言生成对抗网络(G
- WRF移动嵌套结合伏羲模型与CFD(PALM)高精度多尺度降尺度分析研究
Hardess-god
WRF算法人工智能
随着大气科学与数值模拟技术的发展,高精度多尺度气象模拟日益成为科研与应用的热点问题。本文将详细介绍如何使用WRF移动嵌套技术结合伏羲(Fuxi)模型,并通过CFD模型PALM实现精细化降尺度,以满足城市或区域局地精细化气象预报的需求。1.技术路线概述WRF移动嵌套(MovingNesting):动态调整高分辨率嵌套网格位置,追踪天气系统(如台风、强对流系统)以提高局地预报精度。伏羲(Fuxi)模型
- 【图像预处理】
瞬间记忆
深度学习python
(4条消息)图像预处理方法总结_AI强仔的博客-CSDN博客对图像进行预处理的一些常见方法包括:调整图像大小和分辨率,以便适应模型的输入要求。对图像进行裁剪或填充,以使其大小和比例符合要求。调整图像的亮度、对比度和饱和度等图像属性。进行图像平滑或锐化操作,以去除噪声或增强图像特征。进行图像归一化或标准化,以确保各个特征在相同的尺度上。应用数据增强技术,如旋转、平移、缩放、翻转等,以扩大数据集,提高
- 【小白深度教程 1.32】手把手教你从多视角图像进行 3D 重建(SfM 算法)
小寒学姐学AI
3d算法计算机视觉人工智能深度学习python三维重建
【小白深度教程1.32】手把手教你从多视角图像进行3D重建(SfM算法)1.SfM三维重建算法简介2.SfM方法和原理3.安装依赖库4.构建数据集5.可视化结果6.完整代码1.SfM三维重建算法简介从多张照片中开发三维模型被称为多视图3D重建。数码相机的进步以及图像分辨率和清晰度的提高,使得利用仅有的相机而非昂贵的特殊传感器来重建3D图像成为可能。重建的目标是从一组照片中推导场景的几何结构,假设摄
- CS5802一款HDMI转Typec方案转换芯片
芯片嵌入式
CS5802是一款HDMI2.0b到Type-C转换器。C55802具有HDMI2.0b输入,最大带宽可达18Gbps。它支持4K@60Hz的最高分辨率。对于Type-Coutput,它由4个数据通道组成,支持1.62Gbps、2.7Gbps、5.4Gbps的链路速率。内置的可选SSC功能减少了EMI影响。嵌入式微控制器基于32位RISC-Vcore和内部串行闪存。CS5802适用于多个细分市场和
- CVPR 2024 | 低分辨率引领方向:通过自监督学习提升超分辨率的泛化能力
小白学视觉
计算机顶会顶刊论文解读计算机视觉深度学习CVPR计算机顶会论文解读
论文信息题目:Low-ResLeadstheWay:ImprovingGeneralizationforSuper-ResolutionbySelf-SupervisedLearning低分辨率引领方向:通过自监督学习提升超分辨率的泛化能力作者:HaoyuChen,WenboLi,JinjinGu,JingjingRen,HaozeSun,XueyiZou,ZhensongZhang,Youlia
- html页面js获取参数值
0624chenhong
html
1.js获取参数值js
function GetQueryString(name)
{
var reg = new RegExp("(^|&)"+ name +"=([^&]*)(&|$)");
var r = windo
- MongoDB 在多线程高并发下的问题
BigCat2013
mongodbDB高并发重复数据
最近项目用到 MongoDB , 主要是一些读取数据及改状态位的操作. 因为是结合了最近流行的 Storm进行大数据的分析处理,并将分析结果插入Vertica数据库,所以在多线程高并发的情境下, 会发现 Vertica 数据库中有部分重复的数据. 这到底是什么原因导致的呢?笔者开始也是一筹莫 展,重复去看 MongoDB 的 API , 终于有了新发现 :
com.mongodb.DB 这个类有
- c++ 用类模版实现链表(c++语言程序设计第四版示例代码)
CrazyMizzz
数据结构C++
#include<iostream>
#include<cassert>
using namespace std;
template<class T>
class Node
{
private:
Node<T> * next;
public:
T data;
- 最近情况
麦田的设计者
感慨考试生活
在五月黄梅天的岁月里,一年两次的软考又要开始了。到目前为止,我已经考了多达三次的软考,最后的结果就是通过了初级考试(程序员)。人啊,就是不满足,考了初级就希望考中级,于是,这学期我就报考了中级,明天就要考试。感觉机会不大,期待奇迹发生吧。这个学期忙于练车,写项目,反正最后是一团糟。后天还要考试科目二。这个星期真的是很艰难的一周,希望能快点度过。
- linux系统中用pkill踢出在线登录用户
被触发
linux
由于linux服务器允许多用户登录,公司很多人知道密码,工作造成一定的障碍所以需要有时踢出指定的用户
1/#who 查出当前有那些终端登录(用 w 命令更详细)
# who
root pts/0 2010-10-28 09:36 (192
- 仿QQ聊天第二版
肆无忌惮_
qq
在第一版之上的改进内容:
第一版链接:
http://479001499.iteye.com/admin/blogs/2100893
用map存起来号码对应的聊天窗口对象,解决私聊的时候所有消息发到一个窗口的问题.
增加ViewInfo类,这个是信息预览的窗口,如果是自己的信息,则可以进行编辑.
信息修改后上传至服务器再告诉所有用户,自己的窗口
- java读取配置文件
知了ing
1,java读取.properties配置文件
InputStream in;
try {
in = test.class.getClassLoader().getResourceAsStream("config/ipnetOracle.properties");//配置文件的路径
Properties p = new Properties()
- __attribute__ 你知多少?
矮蛋蛋
C++gcc
原文地址:
http://www.cnblogs.com/astwish/p/3460618.html
GNU C 的一大特色就是__attribute__ 机制。__attribute__ 可以设置函数属性(Function Attribute )、变量属性(Variable Attribute )和类型属性(Type Attribute )。
__attribute__ 书写特征是:
- jsoup使用笔记
alleni123
java爬虫JSoup
<dependency>
<groupId>org.jsoup</groupId>
<artifactId>jsoup</artifactId>
<version>1.7.3</version>
</dependency>
2014/08/28
今天遇到这种形式,
- JAVA中的集合 Collectio 和Map的简单使用及方法
百合不是茶
listmapset
List ,set ,map的使用方法和区别
java容器类类库的用途是保存对象,并将其分为两个概念:
Collection集合:一个独立的序列,这些序列都服从一条或多条规则;List必须按顺序保存元素 ,set不能重复元素;Queue按照排队规则来确定对象产生的顺序(通常与他们被插入的
- 杀LINUX的JOB进程
bijian1013
linuxunix
今天发现数据库一个JOB一直在执行,都执行了好几个小时还在执行,所以想办法给删除掉
系统环境:
ORACLE 10G
Linux操作系统
操作步骤如下:
第一步.查询出来那个job在运行,找个对应的SID字段
select * from dba_jobs_running--找到job对应的sid
&n
- Spring AOP详解
bijian1013
javaspringAOP
最近项目中遇到了以下几点需求,仔细思考之后,觉得采用AOP来解决。一方面是为了以更加灵活的方式来解决问题,另一方面是借此机会深入学习Spring AOP相关的内容。例如,以下需求不用AOP肯定也能解决,至于是否牵强附会,仁者见仁智者见智。
1.对部分函数的调用进行日志记录,用于观察特定问题在运行过程中的函数调用
- [Gson六]Gson类型适配器(TypeAdapter)
bit1129
Adapter
TypeAdapter的使用动机
Gson在序列化和反序列化时,默认情况下,是按照POJO类的字段属性名和JSON串键进行一一映射匹配,然后把JSON串的键对应的值转换成POJO相同字段对应的值,反之亦然,在这个过程中有一个JSON串Key对应的Value和对象之间如何转换(序列化/反序列化)的问题。
以Date为例,在序列化和反序列化时,Gson默认使用java.
- 【spark八十七】给定Driver Program, 如何判断哪些代码在Driver运行,哪些代码在Worker上执行
bit1129
driver
Driver Program是用户编写的提交给Spark集群执行的application,它包含两部分
作为驱动: Driver与Master、Worker协作完成application进程的启动、DAG划分、计算任务封装、计算任务分发到各个计算节点(Worker)、计算资源的分配等。
计算逻辑本身,当计算任务在Worker执行时,执行计算逻辑完成application的计算任务
- nginx 经验总结
ronin47
nginx 总结
深感nginx的强大,只学了皮毛,把学下的记录。
获取Header 信息,一般是以$http_XX(XX是小写)
获取body,通过接口,再展开,根据K取V
获取uri,以$arg_XX
&n
- 轩辕互动-1.求三个整数中第二大的数2.整型数组的平衡点
bylijinnan
数组
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
public class ExoWeb {
public static void main(String[] args) {
ExoWeb ew=new ExoWeb();
System.out.pri
- Netty源码学习-Java-NIO-Reactor
bylijinnan
java多线程netty
Netty里面采用了NIO-based Reactor Pattern
了解这个模式对学习Netty非常有帮助
参考以下两篇文章:
http://jeewanthad.blogspot.com/2013/02/reactor-pattern-explained-part-1.html
http://gee.cs.oswego.edu/dl/cpjslides/nio.pdf
- AOP通俗理解
cngolon
springAOP
1.我所知道的aop 初看aop,上来就是一大堆术语,而且还有个拉风的名字,面向切面编程,都说是OOP的一种有益补充等等。一下子让你不知所措,心想着:怪不得很多人都和 我说aop多难多难。当我看进去以后,我才发现:它就是一些java基础上的朴实无华的应用,包括ioc,包括许许多多这样的名词,都是万变不离其宗而 已。 2.为什么用aop&nb
- cursor variable 实例
ctrain
variable
create or replace procedure proc_test01
as
type emp_row is record(
empno emp.empno%type,
ename emp.ename%type,
job emp.job%type,
mgr emp.mgr%type,
hiberdate emp.hiredate%type,
sal emp.sal%t
- shell报bash: service: command not found解决方法
daizj
linuxshellservicejps
今天在执行一个脚本时,本来是想在脚本中启动hdfs和hive等程序,可以在执行到service hive-server start等启动服务的命令时会报错,最终解决方法记录一下:
脚本报错如下:
./olap_quick_intall.sh: line 57: service: command not found
./olap_quick_intall.sh: line 59
- 40个迹象表明你还是PHP菜鸟
dcj3sjt126com
设计模式PHP正则表达式oop
你是PHP菜鸟,如果你:1. 不会利用如phpDoc 这样的工具来恰当地注释你的代码2. 对优秀的集成开发环境如Zend Studio 或Eclipse PDT 视而不见3. 从未用过任何形式的版本控制系统,如Subclipse4. 不采用某种编码与命名标准 ,以及通用约定,不能在项目开发周期里贯彻落实5. 不使用统一开发方式6. 不转换(或)也不验证某些输入或SQL查询串(译注:参考PHP相关函
- Android逐帧动画的实现
dcj3sjt126com
android
一、代码实现:
private ImageView iv;
private AnimationDrawable ad;
@Override
protected void onCreate(Bundle savedInstanceState)
{
super.onCreate(savedInstanceState);
setContentView(R.layout
- java远程调用linux的命令或者脚本
eksliang
linuxganymed-ssh2
转载请出自出处:
http://eksliang.iteye.com/blog/2105862
Java通过SSH2协议执行远程Shell脚本(ganymed-ssh2-build210.jar)
使用步骤如下:
1.导包
官网下载:
http://www.ganymed.ethz.ch/ssh2/
ma
- adb端口被占用问题
gqdy365
adb
最近重新安装的电脑,配置了新环境,老是出现:
adb server is out of date. killing...
ADB server didn't ACK
* failed to start daemon *
百度了一下,说是端口被占用,我开个eclipse,然后打开cmd,就提示这个,很烦人。
一个比较彻底的解决办法就是修改
- ASP.NET使用FileUpload上传文件
hvt
.netC#hovertreeasp.netwebform
前台代码:
<asp:FileUpload ID="fuKeleyi" runat="server" />
<asp:Button ID="BtnUp" runat="server" onclick="BtnUp_Click" Text="上 传" />
- 代码之谜(四)- 浮点数(从惊讶到思考)
justjavac
浮点数精度代码之谜IEEE
在『代码之谜』系列的前几篇文章中,很多次出现了浮点数。 浮点数在很多编程语言中被称为简单数据类型,其实,浮点数比起那些复杂数据类型(比如字符串)来说, 一点都不简单。
单单是说明 IEEE浮点数 就可以写一本书了,我将用几篇博文来简单的说说我所理解的浮点数,算是抛砖引玉吧。 一次面试
记得多年前我招聘 Java 程序员时的一次关于浮点数、二分法、编码的面试, 多年以后,他已经称为了一名很出色的
- 数据结构随记_1
lx.asymmetric
数据结构笔记
第一章
1.数据结构包括数据的
逻辑结构、数据的物理/存储结构和数据的逻辑关系这三个方面的内容。 2.数据的存储结构可用四种基本的存储方法表示,它们分别是
顺序存储、链式存储 、索引存储 和 散列存储。 3.数据运算最常用的有五种,分别是
查找/检索、排序、插入、删除、修改。 4.算法主要有以下五个特性:
输入、输出、可行性、确定性和有穷性。 5.算法分析的
- linux的会话和进程组
网络接口
linux
会话: 一个或多个进程组。起于用户登录,终止于用户退出。此期间所有进程都属于这个会话期。会话首进程:调用setsid创建会话的进程1.规定组长进程不能调用setsid,因为调用setsid后,调用进程会成为新的进程组的组长进程.如何保证? 先调用fork,然后终止父进程,此时由于子进程的进程组ID为父进程的进程组ID,而子进程的ID是重新分配的,所以保证子进程不会是进程组长,从而子进程可以调用se
- 二维数组 元素的连续求解
1140566087
二维数组ACM
import java.util.HashMap;
public class Title {
public static void main(String[] args){
f();
}
// 二位数组的应用
//12、二维数组中,哪一行或哪一列的连续存放的0的个数最多,是几个0。注意,是“连续”。
public static void f(){
- 也谈什么时候Java比C++快
windshome
javaC++
刚打开iteye就看到这个标题“Java什么时候比C++快”,觉得很好笑。
你要比,就比同等水平的基础上的相比,笨蛋写得C代码和C++代码,去和高手写的Java代码比效率,有什么意义呢?
我是写密码算法的,深刻知道算法C和C++实现和Java实现之间的效率差,甚至也比对过C代码和汇编代码的效率差,计算机是个死的东西,再怎么优化,Java也就是和C