转载请标明出处:http://blackwing.iteye.com/blog/1991380
hbase自带了ImportTsv类,可以直接把tsv格式(官方教材显示,是\t分割各个字段的文本格式)生成HFile,并且使用另外一个类org.apache.hadoop.hbase.mapreduce.LoadIncrementalHFiles直接把HFile移动到hbase对应的hdfs目录。
PS:网上看到一个XD说,直接生成HFile并入库HBase效率不如先生成HFile,再通过LoadIncrementalHFiles移动文件到hbase目录高,这点没有验证,我的做法也是先生成,再move。
官方教材在此:
http://hbase.apache.org/book/ops_mgt.html#importtsv
但ImportTsv功能对我来说不适合,例如文件格式为:
topsid uid roler_num typ time
10 111111 255 0 1386553377000
ImportTsv导入的命令为:
bin/hbase org.apache.hadoop.hbase.mapreduce.ImportTsv -Dimporttsv.columns=HBASE_ROW_KEY,kq:topsid,kq:uid,kq:roler_num,kq:type -Dimporttsv.bulk.output=hdfs://storefile-outputdir <hdfs-data-inputdir>
它生成的表格式为:
row : 10
cf : kq
qualifier: topsid
value: 10
.....
而我要求的格式是:
row : 10-111111-255
cf : kq
qualifier: 0
value: 1
所以还是自己写MR处理数据方便。
Mapper:
/*
* adminOnOff.log 文件格式:
* topsid uid roler_num typ time
* */
public class HFileImportMapper2 extends
Mapper<LongWritable, Text, ImmutableBytesWritable, KeyValue> {
protected SimpleDateFormat sdf = new SimpleDateFormat("yyyyMMdd");
protected final String CF_KQ="kq";//考勤
protected final int ONE=1;
@Override
protected void map(LongWritable key, Text value,Context context)
throws IOException, InterruptedException {
String line = value.toString();
System.out.println("line : "+line);
String[] datas = line.split("\\s+");
// row格式为:yyyyMMdd-sid-uid-role_num-timestamp-typ
String row = sdf.format(new Date(Long.parseLong(datas[4])))
+ "-" + datas[0] + "-" + datas[1] + "-" + datas[2]
+ "-" + datas[4] + "-" + datas[3];
ImmutableBytesWritable rowkey = new ImmutableBytesWritable(
Bytes.toBytes(row));
KeyValue kv = new KeyValue(Bytes.toBytes(row),this.CF_KQ.getBytes(), datas[3].getBytes(),Bytes.toBytes(this.ONE));
context.write(rowkey, kv);
}
}
job:
public class GenHFile2 {
public static void main(String[] args) {
Configuration conf = new Configuration();
conf.addResource("myConf.xml");
String input = conf.get("input");
String output = conf.get("output");
String tableName = conf.get("source_table");
System.out.println("table : "+tableName);
HTable table;
try {
//运行前,删除已存在的中间输出目录
try {
FileSystem fs = FileSystem.get(URI.create(output), conf);
fs.delete(new Path(output),true);
fs.close();
} catch (IOException e1) {
e1.printStackTrace();
}
table = new HTable(conf,tableName.getBytes());
Job job = new Job(conf);
job.setJobName("Generate HFile");
job.setJarByClass(HFileImportMapper2.class);
job.setInputFormatClass(TextInputFormat.class);
job.setMapperClass(HFileImportMapper2.class);
FileInputFormat.setInputPaths(job, input);
//job.setReducerClass(KeyValueSortReducer.class);
//job.setMapOutputKeyClass(ImmutableBytesWritable.class);
//job.setMapOutputValueClass(KeyValue.class);
job.getConfiguration().set("mapred.mapoutput.key.class", "org.apache.hadoop.hbase.io.ImmutableBytesWritable");
job.getConfiguration().set("mapred.mapoutput.value.class", "org.apache.hadoop.hbase.KeyValue");
//job.setOutputFormatClass(HFileOutputFormat.class);
FileOutputFormat.setOutputPath(job, new Path(output));
//job.setPartitionerClass(SimpleTotalOrderPartitioner.class);
HFileOutputFormat.configureIncrementalLoad(job,table);
try {
job.waitForCompletion(true);
} catch (InterruptedException e) {
e.printStackTrace();
} catch (ClassNotFoundException e) {
e.printStackTrace();
}
} catch (IOException e) {
e.printStackTrace();
}
}
}
生成的HFile文件在hdfs的/output目录下,已经根据cf名称建好文件目录:
hdfs://namenode/output/kq/601c5029fb264dc8869a635043c24560
其中:
HFileOutputFormat.configureIncrementalLoad(job,table);
根据其源码知道,会自动为job设置好以下参数:
public static void configureIncrementalLoad(Job job, HTable table)
throws IOException {
Configuration conf = job.getConfiguration();
job.setOutputKeyClass(ImmutableBytesWritable.class);
job.setOutputValueClass(KeyValue.class);
job.setOutputFormatClass(HFileOutputFormat.class);
// Based on the configured map output class, set the correct reducer to properly
// sort the incoming values.
// TODO it would be nice to pick one or the other of these formats.
if (KeyValue.class.equals(job.getMapOutputValueClass())) {
job.setReducerClass(KeyValueSortReducer.class);
} else if (Put.class.equals(job.getMapOutputValueClass())) {
job.setReducerClass(PutSortReducer.class);
} else if (Text.class.equals(job.getMapOutputValueClass())) {
job.setReducerClass(TextSortReducer.class);
} else {
LOG.warn("Unknown map output value type:" + job.getMapOutputValueClass());
}
conf.setStrings("io.serializations", conf.get("io.serializations"),
MutationSerialization.class.getName(), ResultSerialization.class.getName(),
KeyValueSerialization.class.getName());
// Use table's region boundaries for TOP split points.
LOG.info("Looking up current regions for table " + Bytes.toString(table.getTableName()));
List<ImmutableBytesWritable> startKeys = getRegionStartKeys(table);
LOG.info("Configuring " + startKeys.size() + " reduce partitions " +
"to match current region count");
job.setNumReduceTasks(startKeys.size());
configurePartitioner(job, startKeys);
// Set compression algorithms based on column families
configureCompression(table, conf);
configureBloomType(table, conf);
configureBlockSize(table, conf);
TableMapReduceUtil.addDependencyJars(job);
TableMapReduceUtil.initCredentials(job);
LOG.info("Incremental table " + Bytes.toString(table.getTableName()) + " output configured.");
}
HFileOutputFormat只支持写单个column family,如果有多个cf,则需要写多个job来实现了。