Linux 2.6下SPI设备模型--------基于AT91RM9200分析

Linux 2.6下SPI设备模型
--------基于AT91RM9200分析
Atmel公司的ARM AT系列,其SPI驱动在kernel 2.6.23里已经包含。如果你打了at91-patch补丁的话,则在内核配置时要小心。在Device Drivers---- > Character devices ---- >取消选中SPI Driver(legacy) for at91rm9200 processor 。同时Device Drivers---- >SPI Support ---- > 选中SPI Support ,Atmel SPI Controler,同时选中 User mode SPI device driver support 。

SPI Driver(legacy) for at91rm9200 processor是保留选项,为了兼容以前版本。如果同时选中SPI Driver(legacy) for at91rm9200 processor,则在/sys里无法注册类spidev,也就无法将设备和驱动联系在一起。与现有atmel spi驱动发生冲突。


各选项对应的编译情况如下:

[*]SPI support ---- Config_SPI 开启SPI功能

[*]Debug support for SPI drivers ---- config SPI_DEBUG 开启SPI debug调试

----SPI Master Controller Drivers ---- depends on SPI_MASTER 生成spi.o

<*>Atmel SPI Controller ---- config SPI_ATMEL 生成atmel_spi.o

<*>Bitbanging SPI master ---- config SPI_BITBANG 生成spi_bitbang.o

<*>AT91RM9200 Bitbang SPI Master ---- CONFIG_SPI_AT91 spi_at91_bitbang.o

---- SPI Protocol Masters ---- depends on SPI_MASTER

< >SPI EEPROMs from most vendors ---- config SPI_AT25 生成at25.o

<*>User mode SPI device driver support ---- config SPI_SPIDEV 生成spidev.o

总线
注册SPI总线


#spi.c

struct bus_type spi_bus_type = {

.name = "spi", // spi总线名称

.dev_attrs = spi_dev_attrs,

.match = spi_match_device,

.uevent = spi_uevent,

.suspend = spi_suspend,

.resume = spi_resume,

};

spi总线将在sysfs/bus下显示。

其bus_type 结构表示总线,它的定义在<linux/device.h>中,如下

struct bus_type {

const char * name;

struct module * owner;

struct kset subsys;

struct kset drivers;

struct kset devices;

struct klist klist_devices;

struct klist klist_drivers;

struct blocking_notifier_head bus_notifier;

struct bus_attribute * bus_attrs;

struct device_attribute * dev_attrs;

struct driver_attribute * drv_attrs;

struct bus_attribute drivers_autoprobe_attr;

struct bus_attribute drivers_probe_attr;

int (*match)(struct device * dev, struct device_driver * drv);

int (*uevent)(struct device *dev, char **envp,

int num_envp, char *buffer, int buffer_size);

int (*probe)(struct device * dev);

int (*remove)(struct device * dev);

void (*shutdown)(struct device * dev);

int (*suspend)(struct device * dev, pm_message_t state);

int (*suspend_late)(struct device * dev, pm_message_t state);

int (*resume_early)(struct device * dev);

int (*resume)(struct device * dev);

unsigned int drivers_autoprobe:1;

};


其中,当一个总线上的新设备或者新驱动被添加时,*match 函数会被调用。如果指定的驱动程序能够处理指定的设备,该函数返回非零值。

对于spi总线,我们必须调用bus_register(&spi_bus_type)进行注册。调用如果成功,SPI总线子系统将被添加到系统中,在sysfs的/sys/bus目录下可以看到。然后,我们就可以向这个总线添加设备了。代码见下:

static int __init spi_init(void)

{

int status;

buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);

if (!buf) {

status = -ENOMEM;

goto err0;

}

status = bus_register(&spi_bus_type);

if (status < 0)

goto err1;

status = class_register(&spi_master_class);

if (status < 0)

goto err2;

return 0;

err2:

bus_unregister(&spi_bus_type);

err1:

kfree(buf);

buf = NULL;

err0:

return status;

}

设备
spi设备的结构如下:


#spi.h

struct spi_device {

struct device dev;

struct spi_master *master;

u32 max_speed_hz;

u8 chip_select;

u8 mode;

#define SPI_CPHA 0x01 /* clock phase */

#define SPI_CPOL 0x02 /* clock polarity */

#define SPI_MODE_0 (0|0) /* (original MicroWire) */

#define SPI_MODE_1 (0|SPI_CPHA)

#define SPI_MODE_2 (SPI_CPOL|0)

#define SPI_MODE_3 (SPI_CPOL|SPI_CPHA)

#define SPI_CS_HIGH 0x04 /* chipselect active high? */

#define SPI_LSB_FIRST 0x08 /* per-word bits-on-wire */

#define SPI_3WIRE 0x10 /* SI/SO signals shared */

#define SPI_LOOP 0x20 /* loopback mode */

u8 bits_per_word;

int irq;

void *controller_state;

void *controller_data;

const char *modalias;

/*

* likely need more hooks for more protocol options affecting how

* the controller talks to each chip, like:

* - memory packing (12 bit samples into low bits, others zeroed)

* - priority

* - drop chipselect after each word

* - chipselect delays

* - ...

*/

};

device结构中包含了设备模型核心用来模拟系统的信息。spidev还有设备的其他信息,因此spi设备结构包含在spidev_data结构里。


struct spidev_data {

struct device dev;

struct spi_device *spi;

struct list_head device_entry;

struct mutex buf_lock;

unsigned users;

u8 *buffer;

};

注册spi设备,

#spidev.c

static int spidev_probe(struct spi_device *spi)

{

status = device_register(&spidev->dev);

}


完成这个调用之后,我们就可以在sysfs中看到它了。

SPI设备驱动程序
spi驱动程序结构如下:

struct spi_driver {

int (*probe)(struct spi_device *spi);

int (*remove)(struct spi_device *spi);

void (*shutdown)(struct spi_device *spi);

int (*suspend)(struct spi_device *spi, pm_message_t mesg);

int (*resume)(struct spi_device *spi);

struct device_driver driver;

};


spi驱动程序注册函数如下:

int spi_register_driver(struct spi_driver *sdrv)

{

sdrv->driver.bus = &spi_bus_type;

if (sdrv->probe)

sdrv->driver.probe = spi_drv_probe;

if (sdrv->remove)

sdrv->driver.remove = spi_drv_remove;

if (sdrv->shutdown)

sdrv->driver.shutdown = spi_drv_shutdown;

return driver_register(&sdrv->driver);

}


spidev的驱动名如下:

static struct spi_driver spidev_spi = {

.driver = {

.name = "spidev",

.owner = THIS_MODULE,

},

.probe = spidev_probe,

.remove = __devexit_p(spidev_remove),

};


一个spi_register_driver调用将spidev添加到系统中。一旦初始化完成,就可以在sysfs中看到驱动程序信息。


spidev类结构如下:

static struct class spidev_class = {

.name = "spidev",

.owner = THIS_MODULE,

.dev_release = spidev_classdev_release,

};


AT91RM9200 SPIDEV初始化
AT91RM9200的spi驱动,对于EK板,原先的SPI是用于dataflash的。其代码如下:

static struct spi_board_info ek_spi_devices[] = {

{ /* DataFlash chip */

.modalias = "mtd_dataflash",

.chip_select = 0,

.max_speed_hz = 15 * 1000 * 1000,

},


我们需要将.modalias改成我们自己的spi设备名

在spi设备初始化代码中,class_register(&spidev_class)注册类,spi_register_driver(&spidev_spi)注册spidev驱动。

#drivers/spi/spidev.c

static int __init spidev_init(void)

{

int status;

/* Claim our 256 reserved device numbers. Then register a class

* that will key udev/mdev to add/remove /dev nodes. Last, register

* the driver which manages those device numbers.

*/

BUILD_BUG_ON(N_SPI_MINORS > 256);

status = register_chrdev(SPIDEV_MAJOR, "spi", &spidev_fops);

if (status < 0)

return status;

status = class_register(&spidev_class);

if (status < 0) {

unregister_chrdev(SPIDEV_MAJOR, spidev_spi.driver.name);

return status;

}

status = spi_register_driver(&spidev_spi);

if (status < 0) {

class_unregister(&spidev_class);

unregister_chrdev(SPIDEV_MAJOR, spidev_spi.driver.name);

}

return status;

}


挂载/sys

mount –t sysfs sysfs /sys

可以看到有/sys/class/spidev/spidev0.0,表明设备已经挂载在总线上了,同时与驱动联系起来。

使用mdev –s,可以在/dev下看到spidev0.0这个设备了。

自此,spi设备驱动就可以工作了。

测试程序:
#include <stdio.h>

#include <unistd.h>

#include <stdlib.h>

#include <fcntl.h>

#include <string.h>

#include <sys/ioctl.h>

#include <sys/types.h>

#include <sys/stat.h>

#include <linux/types.h>

#include <linux/spi/spidev.h>

static int verbose;

static void do_read(int fd, int len)

{

unsigned char buf[32], *bp;

int status;

/* read at least 2 bytes, no more than 32 */

if (len < 2)

len = 2;

else if (len > sizeof(buf))

len = sizeof(buf);

memset(buf, 0, sizeof buf);

status = read(fd, buf, len);

if (status < 0) {

perror("read");

return;

}

if (status != len) {

fprintf(stderr, "short read\n");

return;

}

printf("read(%2d, %2d): %02x %02x,", len, status,

buf[0], buf[1]);

status -= 2;

bp = buf + 2;

while (status-- > 0)

printf(" %02x", *bp++);

printf("\n");

}

static void do_msg(int fd, int len)

{

struct spi_ioc_transfer xfer[2];

unsigned char buf[32], *bp;

int status;

memset(xfer, 0, sizeof xfer);

memset(buf, 0, sizeof buf);

if (len > sizeof buf)

len = sizeof buf;

buf[0] = 0xaa;

xfer[0].tx_buf = (__u64) buf;

xfer[0].len = 1;

xfer[1].rx_buf = (__u64) buf;

xfer[1].len = len;

status = ioctl(fd, SPI_IOC_MESSAGE(2), xfer);

if (status < 0) {

perror("SPI_IOC_MESSAGE");

return;

}

printf("response(%2d, %2d): ", len, status);

for (bp = buf; len; len--)

printf(" %02x", *bp++);

printf("\n");

}

static void dumpstat(const char *name, int fd)

{

__u8 mode, lsb, bits;

__u32 speed;

if (ioctl(fd, SPI_IOC_RD_MODE, &mode) < 0) {

perror("SPI rd_mode");

return;

}

if (ioctl(fd, SPI_IOC_RD_LSB_FIRST, &lsb) < 0) {

perror("SPI rd_lsb_fist");

return;

}

if (ioctl(fd, SPI_IOC_RD_BITS_PER_WORD, &bits) < 0) {

perror("SPI bits_per_word");

return;

}

if (ioctl(fd, SPI_IOC_RD_MAX_SPEED_HZ, &speed) < 0) {

perror("SPI max_speed_hz");

return;

}

printf("%s: spi mode %d, %d bits %sper word, %d Hz max\n",

name, mode, bits, lsb ? "(lsb first) " : "", speed);

}

int main(int argc, char **argv)

{

int c;

int readcount = 0;

int msglen = 0;

int fd;

const char *name;

while ((c = getopt(argc, argv, "hm:r:v")) != EOF) {

switch (c) {

case 'm':

msglen = atoi(optarg);

if (msglen < 0)

goto usage;

continue;

case 'r':

readcount = atoi(optarg);

if (readcount < 0)

goto usage;

continue;

case 'v':

verbose++;

continue;

case 'h':

case '?':

usage:

fprintf(stderr,

"usage: %s [-h] [-m N] [-r N] /dev/spidevB.D\n",

argv[0]);

return 1;

}

}

if ((optind + 1) != argc)

goto usage;

name = argv[optind];

fd = open(name, O_RDWR);

if (fd < 0) {

perror("open");

return 1;

}

dumpstat(name, fd);

if (msglen)

do_msg(fd, msglen);

if (readcount)

do_read(fd, readcount);

close(fd);

return 0;

}


备注:

1. 如果要设置模式,速率等,则可仿照以下语句:

speed =10*1000*1000; //10MHz

if (ioctl(fd, SPI_IOC_WR_MAX_SPEED_HZ, &speed) < 0) {

perror("SPI max_speed_hz");

return;

}

2. 默认spi_io_transfer时,每个字节之间有延时。在atmel_spi_setup.c文件里去掉该延时语句:

/* TODO: DLYBS and DLYBCT */

//csr |= SPI_BF(DLYBS, 10);

//csr |= SPI_BF(DLYBCT, 10);

这样就可以达到无间隙快速传输批量数据。

3. 标准read(),write()两个函数仅适用于半双工传输,。在传输之间不激活片选。而SPI_IOC_MESSAGE(N)则是全双工传输,并且片选始终激活。

4. SPI_IOC_MESSAGE传输长度有限制,默认是一页的长度,但是可以更改。

spi_ioc_transfer结构的spi长度 是字节长度,16位传输的时候要注意。

你可能感兴趣的:(数据结构,C++,c,linux,IOC)