常见的一些MySQL数据库优化技巧

mysql优化和性能很重要,特别是对一些中等站,简单的优化效果明显

    下是是个人对网站天气预报网(http://tqybw.net)优化的一些等记,后续优化的问题会更新上来

    1. 索引很重要

  之前列举记录用了下面的语句。state字段为索引。

  SELECT * FROM history WHERE state='ok' AND feed_url<>'' LIMIT N,10

  当记录数量很大时,有几万之后,这句SQL就很慢了。主要是因为feed_url没有建立索引。后来的解决方法是,把feed_url为空的,设为一个ok以外的state值,就行了。

作为条件查询字段,类型最好按需求长度越小越好,整型比字符好!

  2. 索引不是万能的

  为了计算记录总数,下面的语句会很慢。

  mysql> SELECT COUNT(*) FROM feed_urls WHERE state='error';

  +----------+

  | COUNT(*) |

  +----------+

  | 30715 |

  +----------+

  1 row in set (0.14 sec)

  mysql> EXPLAIN SELECT COUNT(*) FROM feed_urls WHERE state='error'\G

  *************************** 1. row ***************************

  id: 1

  select_type: SIMPLE

  table: feed_urls

  type: ref

  possible_keys: state,page_index

  key: page_index

  key_len: 10

  ref: const

  rows: 25936

  Extra: Using where; Using index

  1 row in set (0.00 sec)

 

  state为索引,请求用时140ms。遍历了state='error'索引下的每一条记录。

 

  mysql> SELECT state,COUNT(*) FROM feed_urls GROUP BY state;

  +----------+----------+

  | state | COUNT(*) |

  +----------+----------+

  | error | 30717 |

  | fetching | 8 |

  | nofeed | 76461 |

  | ok | 74703 |

  | queued | 249681 |

  +----------+----------+

  5 rows in set (0.55 sec)

  mysql> EXPLAIN SELECT state,COUNT(*) FROM feed_urls GROUP BY state\G

  *************************** 1. row ***************************

  id: 1

  select_type: SIMPLE

  table: feed_urls

  type: index

  possible_keys: NULL

  key: state

  key_len: 10

  ref: NULL

  rows: 431618

  Extra: Using index

  1 row in set (0.00 sec)

 

  请求用时550ms。遍历了每个state下的每一条记录。

  改进方法:

  独立一个表用来计数,使用MySQL的Trigger同步计数:

 

  CREATE TRIGGER my_trigger AFTER UPDATE ON feed_urls

  FOR EACH ROW BEGIN

  IF OLD.state <> NEW.state THEN

  IF NEW.state='ok' THEN

  UPDATE feed_stat SET count_feed = count_feed + 1;

  END IF;

  IF NEW.state IN ('ok', 'error', 'nofeed') THEN

  UPDATE feed_stat SET count_access = count_access + 1;

  END IF;

  END IF;

  END

 

  3. 当分页很大时

 

  mysql> SELECT * FROM feed_urls LIMIT 230000, 1\G

  *************************** 1. row ***************************

  id: 736841f82abb0bc87ccfec7c0fdbd09c30b5a24d

  link: http://tqybw.net

  title: Tim Peterson

  feed_url: NULL

  update_time: 2012-05-12 11:01:56

  state: queued

  http_server: NULL

  abstract: NULL

  previous_id: ceea30e0ba609b69198c53ce71c44070d69038c5

  ref_count: 1

  error: NULL

  aid: 230001

  1 row in set (0.50 sec)

  mysql> EXPLAIN SELECT * FROM feed_urls LIMIT 230000, 1\G

  *************************** 1. row ***************************

  id: 1

  select_type: SIMPLE

  table: feed_urls

  type: ALL

  possible_keys: NULL

  key: NULL

  key_len: NULL

  ref: NULL

  rows: 431751

  Extra:

  1 row in set (0.00 sec)

 

  读取一条记录,耗时500ms,因为表记录是变长的,所以MySQL不能算出目标位置,只能每一条记录的数过去。

  改进方法:

  通过索引定位,数索引比数记录要快,因为索引占用的空间比整条记录小很多。

 

  mysql> SELECT * FROM (SELECT aid FROM feed_urls ORDER BY aid LIMIT 215000, 1) d JOIN feed_urls u ON d.aid=u.aid\G

  *************************** 1. row ***************************

  aid: 215001

  id: 2e4b1a385c8aae40b3ec2af9153805ca446f2029

  link: http://tqybw.net

  title: NCSE

  feed_url: NULL

  update_time: 2012-05-12 10:47:15

  state: queued

  http_server: NULL

  abstract: NULL

  previous_id: 819a6e3c5edc1624a9b8f171d8d3ae269843785f

  ref_count: 3

  error: NULL

  aid: 215001

  1 row in set (0.06 sec)

  mysql> EXPLAIN SELECT * FROM (SELECT aid FROM feed_urls ORDER BY aid LIMIT 215000, 1) d JOIN feed_urls u ON d.aid=u.aid\G

  *************************** 1. row ***************************

  id: 1

  select_type: PRIMARY

  table:

  type: system

  possible_keys: NULL

  key: NULL

  key_len: NULL

  ref: NULL

  rows: 1

  Extra:

  *************************** 2. row ***************************

  id: 1

  select_type: PRIMARY

  table: u

  type: const

  possible_keys: aid

  key: aid

  key_len: 4

  ref: const

  rows: 1

  Extra:

  *************************** 3. row ***************************

  id: 2

  select_type: DERIVED

  table: feed_urls

  type: index

  possible_keys: NULL

  key: aid

  key_len: 4

  ref: NULL

  rows: 211001

  Extra: Using index

  3 rows in set (0.15 sec)

 

  耗时60ms,比之前的方法快了将近10倍。如果LIMIT语句里还有WHERE a=1,应该建立一个(a,aid)的索引。

  话说,MySQL好像还是不能直接算出第21500条索引的位置呀,这种方法还是数了索引了,能算出来就直接0ms了。不过这样的效率,对于百万级的,还能应付吧。如果是千万级的或者像我之前在KS创建的一张上亿条记录的表(120G),这种方法就肯定不行了。

  经过上述优化,打开最后一页的速度已经很快了(之前需要800ms,现在则为300ms左右)。

 

  膜拜下这Burst.NET最低档次的VPS (30RMB/month)。

  root@xiaoxia-pc:~/# ping feed.readself.com -n

  PING app.readself.com (184.82.185.32) 56(84) bytes of data.

  64 bytes from 184.82.185.32: icmp_req=1 ttl=45 time=161 ms

  64 bytes from 184.82.185.32: icmp_req=2 ttl=45 time=161 ms

  64 bytes from 184.82.185.32: icmp_req=3 ttl=45 time=161 ms

  用同样的方法,优化了搜索引擎的排名算法。即排名过程中选取尽量少的值出来排序,排序后再JOIN一次获取结果的信息。

  排序过程如下:

 

  SELECT u.*, count_level(u.id) lv

  FROM(

  SELECT f.id, f.ref_count, MATCH(i.link,i.title) AGAINST (keywords) score

  FROM feed_index i

  JOIN feed_urls f ON f.id=i.id

  WHERE MATCH(i.link,i.title) AGAINST (keywords)

  ORDER BY score*0.5 + score*0.5*(ref_count/max_ref_count_in_result) DESC

  LIMIT offset,10

  ) d JOIN feed_urls u ON u.id = d.id

 

  目前处理10万记录的全文索引数据,MySQL还是可以满足的,就是不知道上百万之后,还能不能撑下去。撑不下去就依赖第三方的工具了,例如Sphinx

或者采用其它方法,如ID值起始法!

 

平时项目中还有很多有关mysql的优化方法!用到时有时间再贴出来!

你可能感兴趣的:(mysql优化)