本文档的Copyleft归yfydz所有,使用GPL发布,可以自由拷贝、转载,转载时请保持文档的完整性,严禁用于任何商业用途。
msn:
[email protected]
来源: http://yfydz.cublog.cn
1. 前言
在2.4/2.6内核的Linux中的防火墙代码netfilter中支持源NAT(SNAT)和目的NAT
(DNAT),基本可以满足各种类型的NAT需求,本文介绍Linux下的NAT的具体实现过程,所引的内核代码版本2.4.26,NAT原理部分不在此介绍,有兴趣者可先看我的另一篇NAT原理介绍的文章。
2. NAT hook
NAT操作也是以netfilter节点形式挂接在相应的处理点上的,DNAT挂接在NF_IP_PRE_ROUTING点上,优先级高于 FILTER低于MANGLE,表示在mangle表后处理,但在filter表前处理数据包;SNAT挂接在NF_IP_POST_ROUTING点上,优先级低于FILTER,表示在filter表后面处理数据包。
在net/ipv4/netfilter/ip_nat_standalone.c中:
目的NAT的hook节点:
/* Before packet filtering, change destination */
static struct nf_hook_ops ip_nat_in_ops
= { { NULL, NULL }, ip_nat_fn, PF_INET, NF_IP_PRE_ROUTING, NF_IP_PRI_NAT_DST };
源NAT的hook节点:
/* After packet filtering, change source */
static struct nf_hook_ops ip_nat_out_ops
= { { NULL, NULL }, ip_nat_out, PF_INET, NF_IP_POST_ROUTING, NF_IP_PRI_NAT_SRC};
include/linux/netfilter_ipv4.h
enum nf_ip_hook_priorities {
NF_IP_PRI_FIRST = INT_MIN,
NF_IP_PRI_CONNTRACK = -200, // 连接跟踪
NF_IP_PRI_MANGLE = -150, // mangle table
NF_IP_PRI_NAT_DST = -100, // DNAT
NF_IP_PRI_FILTER = 0, // filter table
NF_IP_PRI_NAT_SRC = 100, // SNAT
NF_IP_PRI_LAST = INT_MAX,
};
ip_nat_fn()是NAT hook的主处理函数,ip_nat_out()函数也是在数据合法性检查后调用ip_nat_fn()函数。
3. NAT处理相关结构
在状态连接结构struct ip_conntrack中包含了关于NAT的相关结构(include/linux/netfilter/ip_conntrack.h):
struct ip_conntrack
{
......
#ifdef CONFIG_IP_NF_NAT_NEEDED
struct {
struct ip_nat_info info;
union ip_conntrack_nat_help help;
#if defined(CONFIG_IP_NF_TARGET_MASQUERADE) || \
defined(CONFIG_IP_NF_TARGET_MASQUERADE_MODULE)
int masq_index;
#endif
} nat;
#endif /* CONFIG_IP_NF_NAT_NEEDED */
};
其中比较重要的是struct ip_nat_info结构,而union ip_conntrack_nat_help是各协议NAT时需要特殊处理的结构描述,不过在2.4.26内核中都没定义,联合为空。
#define IP_NAT_MAX_MANIPS (2*3)
// 此结构描述数据包中要修改部分的信息
struct ip_nat_info_manip
{
/* The direction. */
u_int8_t direction;
/* Which hook the manipulation happens on. */
u_int8_t hooknum;
/* The manipulation type. */
u_int8_t maniptype; // 修改类型: SNAT / DNAT
// 连接的数据包要修改的信息,包括地址和上层的协议信息
/* Manipulations to occur at each conntrack in this dirn. */
struct ip_conntrack_manip manip;
};
/* The structure embedded in the conntrack structure. */
struct ip_nat_info
{
/* Set to zero when conntrack created: bitmask of maniptypes */
int initialized; // 实际最多用两位
unsigned int num_manips;
/* Manipulations to be done on this conntrack. */
// 每个最多可以记录6个NAT信息
struct ip_nat_info_manip manips[IP_NAT_MAX_MANIPS];
struct ip_nat_hash bysource, byipsproto; // 按地址和协议的HASH表
/* Helper (NULL if none). */
struct ip_nat_helper *helper; // 多连接协议的NAT时的helper
struct ip_nat_seq seq[IP_CT_DIR_MAX]; // 描述两个方向的序列号变化情况
};
4. ip_nat_fn()函数
ip_nat_fn()是NAT hook的基本处理函数(net/ipv4/netfilter/ip_nat_standalone.c),目的是建立连接的NAT info信息, 并修改数据包中的相应部分。
static unsigned int
ip_nat_fn(unsigned int hooknum,
struct sk_buff **pskb,
const struct net_device *in,
const struct net_device *out,
int (*okfn)(struct sk_buff *))
{
struct ip_conntrack *ct;
enum ip_conntrack_info ctinfo;
struct ip_nat_info *info;
/* maniptype == SRC for postrouting. */
// 根据hooknum来确定进行哪种方式的NAT,netfilter在hook点是能进行哪种NAT是固定的:
// NF_IP_PRE_ROUTING点进行的是DNAT,maniptype=1
// NF_IP_POST_ROUTING点进行的是SNAT,maniptype=0
enum ip_nat_manip_type maniptype = HOOK2MANIP(hooknum);
/* We never see fragments: conntrack defrags on pre-routing
and local-out, and ip_nat_out protects post-routing. */
IP_NF_ASSERT(!((*pskb)->nh.iph->frag_off
& htons(IP_MF|IP_OFFSET)));
(*pskb)->nfcache |= NFC_UNKNOWN;
/* If we had a hardware checksum before, it's now invalid */
if ((*pskb)->ip_summed == CHECKSUM_HW)
(*pskb)->ip_summed = CHECKSUM_NONE;
// 进行NAT的包必须都经过的连接跟踪处理,如果找不到该包对应的连接,不对其进行NAT处理
// 连接跟踪优先级最高,是数据包一进入netfilter就要进行处理的
ct = ip_conntrack_get(*pskb, &ctinfo);
/* Can't track? It's not due to stress, or conntrack would
have dropped it. Hence it's the user's responsibilty to
packet filter it out, or implement conntrack/NAT for that
protocol. 8) --RR */
if (!ct) {
/* Exception: ICMP redirect to new connection (not in
hash table yet). We must not let this through, in
case we're doing NAT to the same network. */
struct iphdr *iph = (*pskb)->nh.iph;
struct icmphdr *hdr = (struct icmphdr *)
((u_int32_t *)iph + iph->ihl);
if (iph->protocol == IPPROTO_ICMP
&& hdr->type == ICMP_REDIRECT)
return NF_DROP;
return NF_ACCEPT;
}
switch (ctinfo) {
//对于相关连接、相关连接的回复、新连接的包进行NAT信息的构建
case IP_CT_RELATED:
case IP_CT_RELATED+IP_CT_IS_REPLY:
if ((*pskb)->nh.iph->protocol == IPPROTO_ICMP) {
return icmp_reply_translation(*pskb, ct, hooknum,
CTINFO2DIR(ctinfo));
}
/* Fall thru... (Only ICMPs can be IP_CT_IS_REPLY) */
case IP_CT_NEW:
info = &ct->nat.info;
WRITE_LOCK(&ip_nat_lock);
/* Seen it before? This can happen for loopback, retrans,
or local packets.. */
// 检查是否已经进行相应方向的初始化,注意初始化可以是两个方向同时进行的
// 这就是说一个数据包可以同时修改源和目的, 这在服务器和内网在相同网段时会用到,
// netfilter已经能自动处理这种情况,根本不需要进行修改,以前我的理解有误,以为
// 只能修改一个方向的数据
if (!(info->initialized & (1 << maniptype))
#ifndef CONFIG_IP_NF_NAT_LOCAL
/* If this session has already been confirmed we must not
* touch it again even if there is no mapping set up.
* Can only happen on local->local traffic with
* CONFIG_IP_NF_NAT_LOCAL disabled.
*/
&& !(ct->status & IPS_CONFIRMED)
#endif
) {
unsigned int ret;
if (ct->master
&& master_ct(ct)->nat.info.helper
&& master_ct(ct)->nat.info.helper->expect) {
// 多连接协议情况, 如果是子连接, 调用主连接相关的expect函数处理填写NAT info信息
ret = call_expect(master_ct(ct), pskb,
hooknum, ct, info);
} else {
#ifdef CONFIG_IP_NF_NAT_LOCAL
/* LOCAL_IN hook doesn't have a chain! */
if (hooknum == NF_IP_LOCAL_IN)
ret = alloc_null_binding(ct, info,
hooknum);
else
#endif
// 否则根据NAT规则表查找规则, 执行规则的动作: SNAT或DNAT, 填写NAT info信息
ret = ip_nat_rule_find(pskb, hooknum, in, out,
ct, info);
}
// 返回值不是接受的话直接返回, 数据包将被丢弃
if (ret != NF_ACCEPT) {
WRITE_UNLOCK(&ip_nat_lock);
return ret;
}
} else
DEBUGP("Already setup manip %s for ct %p\n",
maniptype == IP_NAT_MANIP_SRC ? "SRC" : "DST",
ct);
WRITE_UNLOCK(&ip_nat_lock);
break;
default:
// 连接的NAT信息已经填好, 直接使用
/* ESTABLISHED */
IP_NF_ASSERT(ctinfo == IP_CT_ESTABLISHED
|| ctinfo == (IP_CT_ESTABLISHED+IP_CT_IS_REPLY));
info = &ct->nat.info;
}
IP_NF_ASSERT(info);
// 根据NAT info信息对数据包的相应部分进行修改
return do_bindings(ct, ctinfo, info, hooknum, pskb);
}
4. do_bindings()函数
do_bindings()是完成具体的NAT操作部分的函数(net/ipv4/netfilter/ip_nat_core.c),修改地址端口等信息,必要时修改数据内容部分信息(这种情况下可能数据包长度会变,序列号/确认号相应会改变,这些都累计进NAT info参数中),并重新各种校验和(TCP/UDP/ICMP校验和,IP头校验和):
/* Do packet manipulations according to binding. */
unsigned int
do_bindings(struct ip_conntrack *ct,
enum ip_conntrack_info ctinfo,
struct ip_nat_info *info,
unsigned int hooknum,
struct sk_buff **pskb)
{
unsigned int i;
struct ip_nat_helper *helper;
// 数据方向:original or reply
enum ip_conntrack_dir dir = CTINFO2DIR(ctinfo);
// 是否是TCP协议,TCP协议要处理序列号/确认号
int is_tcp = (*pskb)->nh.iph->protocol == IPPROTO_TCP;
/* Need nat lock to protect against modification, but neither
conntrack (referenced) and helper (deleted with
synchronize_bh()) can vanish. */
READ_LOCK(&ip_nat_lock);
for (i = 0; i < info->num_manips; i++) {
/* raw socket (tcpdump) may have clone of incoming
skb: don't disturb it --RR */
if (skb_cloned(*pskb) && !(*pskb)->sk) {
struct sk_buff *nskb = skb_copy(*pskb, GFP_ATOMIC);
if (!nskb) {
READ_UNLOCK(&ip_nat_lock);
return NF_DROP;
}
kfree_skb(*pskb);
*pskb = nskb;
}
// 检查数据包方向和hooknum是否是与NAT info中规定的一致
if (info->manips[i].direction == dir
&& info->manips[i].hooknum == hooknum) {
DEBUGP("Mangling %p: %s to %u.%u.%u.%u %u\n",
*pskb,
info->manips[i].maniptype == IP_NAT_MANIP_SRC
? "SRC" : "DST",
NIPQUAD(info->manips[i].manip.ip),
htons(info->manips[i].manip.u.all));
// 进行具体的NAT操作,修改IP头的地址、TCP、UDP等的端口
manip_pkt((*pskb)->nh.iph->protocol,
(*pskb)->nh.iph,
(*pskb)->len,
&info->manips[i].manip,
info->manips[i].maniptype,
&(*pskb)->nfcache);
}
}
helper = info->helper;
READ_UNLOCK(&ip_nat_lock);
// 多连接协议
if (helper) {
struct ip_conntrack_expect *exp = NULL;
struct list_head *cur_item;
int ret = NF_ACCEPT;
int helper_called = 0;
DEBUGP("do_bindings: helper existing for (%p)\n", ct);
/* Always defragged for helpers */
IP_NF_ASSERT(!((*pskb)->nh.iph->frag_off
& htons(IP_MF|IP_OFFSET)));
/* Have to grab read lock before sibling_list traversal */
READ_LOCK(&ip_conntrack_lock);
// 主连接的子连接链表是倒着搜索的
list_for_each_prev(cur_item, &ct->sibling_list) {
// 取得期待的连接信息
exp = list_entry(cur_item, struct ip_conntrack_expect,
expected_list);
/* if this expectation is already established, skip */
// 期待的子连接已经到了,不用再处理
if (exp->sibling)
continue;
// 检查数据包是否是要修改的数据包,对于UDP、ICMP函数返回始终是1,TCP协议是才可能返回0
if (exp_for_packet(exp, pskb)) {
/* FIXME: May be true multiple times in the
* case of UDP!! */
DEBUGP("calling nat helper (exp=%p) for packet\n", exp);
// 调用多连接协议的help函数修改内容部分的相关数据
ret = helper->help(ct, exp, info, ctinfo,
hooknum, pskb);
if (ret != NF_ACCEPT) {
READ_UNLOCK(&ip_conntrack_lock);
return ret;
}
helper_called = 1;
}
}
/* Helper might want to manip the packet even when there is no
* matching expectation for this packet */
if (!helper_called && helper->flags & IP_NAT_HELPER_F_ALWAYS) {
DEBUGP("calling nat helper for packet without expectation\n");
ret = helper->help(ct, NULL, info, ctinfo,
hooknum, pskb);
if (ret != NF_ACCEPT) {
READ_UNLOCK(&ip_conntrack_lock);
return ret;
}
}
READ_UNLOCK(&ip_conntrack_lock);
/* Adjust sequence number only once per packet
* (helper is called at all hooks) */
// 调整TCP的序列号
if (is_tcp && (hooknum == NF_IP_POST_ROUTING
|| hooknum == NF_IP_LOCAL_IN)) {
DEBUGP("ip_nat_core: adjusting sequence number\n");
/* future: put this in a l4-proto specific function,
* and call this function here. */
ip_nat_seq_adjust(*pskb, ct, ctinfo);
}
return ret;
} else
return NF_ACCEPT;
/* not reached */
}
manip_pkt()函数(net/ipv4/netfilter/ip_nat_core.c)相对就比较简单了,先修改传输层部分的数据参数(如TCP、UDP端口),再修改IP头中的地址:
static void
manip_pkt(u_int16_t proto, struct iphdr *iph, size_t len,
const struct ip_conntrack_manip *manip,
enum ip_nat_manip_type maniptype,
__u32 *nfcache)
{
*nfcache |= NFC_ALTERED;
// find_nat_proto函数始终会返回一个协议,因为如果不是能处理的协议,将
// 返回缺省的未知协议处理,由此也可知在IP上层协议NAT处理结构中的
// manip_pkt()函数不能为空,这个函数可以什么都不作,但不能为NULL
find_nat_proto(proto)->manip_pkt(iph, len, manip, maniptype);
// 根据NAT类型,修改源或目的IP地址
if (maniptype == IP_NAT_MANIP_SRC) {
iph->check = ip_nat_cheat_check(~iph->saddr, manip->ip,
iph->check);
iph->saddr = manip->ip;
} else {
iph->check = ip_nat_cheat_check(~iph->daddr, manip->ip,
iph->check);
iph->daddr = manip->ip;
}
#if 0
if (ip_fast_csum((u8 *)iph, iph->ihl) != 0)
DEBUGP("IP: checksum on packet bad.\n");
if (proto == IPPROTO_TCP) {
void *th = (u_int32_t *)iph + iph->ihl;
if (tcp_v4_check(th, len - 4*iph->ihl, iph->saddr, iph->daddr,
csum_partial((char *)th, len-4*iph->ihl, 0)))
DEBUGP("TCP: checksum on packet bad\n");
}
#endif
}
6. SNAT、DNAT目标函数
前面在ip_nat_fn()函数中调用的ip_nat_rule_find()用来查找NAT规则,执行规则的动作,规则目标不是SNAT就是DNAT,该目标的具体实现在net/ipv4/netfilter/ip_nat_rule.c中。不论是SNAT还是DNAT规则,其目标函数最终都是调用ip_nat_setup_info()函数来建立连接的NAT info信息。
net/ipv4/netfilter/ip_nat_rule.c:
/* Source NAT */
static unsigned int ipt_snat_target(struct sk_buff **pskb,
unsigned int hooknum,
const struct net_device *in,
const struct net_device *out,
const void *targinfo,
void *userinfo)
{
struct ip_conntrack *ct;
enum ip_conntrack_info ctinfo;
IP_NF_ASSERT(hooknum == NF_IP_POST_ROUTING);
ct = ip_conntrack_get(*pskb, &ctinfo);
/* Connection must be valid and new. */
IP_NF_ASSERT(ct && (ctinfo == IP_CT_NEW || ctinfo == IP_CT_RELATED));
IP_NF_ASSERT(out);
// 只有新连接才进行NAT info的建立
// targinfo实际是struct ip_nat_multi_range结构指针,记录转换后的
// 地址、端口等信息, 一个NAT规则可以转换到可以转换到多个地址端口上
return ip_nat_setup_info(ct, targinfo, hooknum);
}
static unsigned int ipt_dnat_target(struct sk_buff **pskb,
unsigned int hooknum,
const struct net_device *in,
const struct net_device *out,
const void *targinfo,
void *userinfo)
{
struct ip_conntrack *ct;
enum ip_conntrack_info ctinfo;
#ifdef CONFIG_IP_NF_NAT_LOCAL
IP_NF_ASSERT(hooknum == NF_IP_PRE_ROUTING
|| hooknum == NF_IP_LOCAL_OUT);
#else
IP_NF_ASSERT(hooknum == NF_IP_PRE_ROUTING);
#endif
ct = ip_conntrack_get(*pskb, &ctinfo);
/* Connection must be valid and new. */
IP_NF_ASSERT(ct && (ctinfo == IP_CT_NEW || ctinfo == IP_CT_RELATED));
// 只有新连接才进行NAT info的建立
// targinfo实际是struct ip_nat_multi_range结构指针,记录转换后的
// 地址、端口等信息, 一个NAT规则可以转换到可以转换到多个地址端口上
return ip_nat_setup_info(ct, targinfo, hooknum);
}
......
int ip_nat_rule_find(struct sk_buff **pskb,
unsigned int hooknum,
const struct net_device *in,
const struct net_device *out,
struct ip_conntrack *ct,
struct ip_nat_info *info)
{
int ret;
ret = ipt_do_table(pskb, hooknum, in, out, &nat_table, NULL);
if (ret == NF_ACCEPT) {
// 数据接受但有没有初始化,分配一个NULL binding,实际不作任何修改,也就是
// 说对该包没有相应的NAT规则对于,不需要进行NAT处理
if (!(info->initialized & (1 << HOOK2MANIP(hooknum))))
/* NUL mapping */
ret = alloc_null_binding(ct, info, hooknum);
}
return ret;
}
7. ip_nat_setup_info()函数
ip_nat_setup_info()函数是建立连接的NAT info的基本函数,在net/ipv4/netfiler/ip_nat_core.c中定义:
/* Where to manip the reply packets (will be reverse manip). */
static unsigned int opposite_hook[NF_IP_NUMHOOKS]
= { [NF_IP_PRE_ROUTING] = NF_IP_POST_ROUTING,
[NF_IP_POST_ROUTING] = NF_IP_PRE_ROUTING,
#ifdef CONFIG_IP_NF_NAT_LOCAL
[NF_IP_LOCAL_OUT] = NF_IP_LOCAL_IN,
[NF_IP_LOCAL_IN] = NF_IP_LOCAL_OUT,
#endif
};
unsigned int
ip_nat_setup_info(struct ip_conntrack *conntrack,
const struct ip_nat_multi_range *mr,
unsigned int hooknum)
{
struct ip_conntrack_tuple new_tuple, inv_tuple, reply;
struct ip_conntrack_tuple orig_tp;
struct ip_nat_info *info = &conntrack->nat.info;
// 如果info->initialized不为0,表示已经初始化过了
int in_hashes = info->initialized;
MUST_BE_WRITE_LOCKED(&ip_nat_lock);
IP_NF_ASSERT(hooknum == NF_IP_PRE_ROUTING
|| hooknum == NF_IP_POST_ROUTING
|| hooknum == NF_IP_LOCAL_OUT);
IP_NF_ASSERT(info->num_manips < IP_NAT_MAX_MANIPS);
IP_NF_ASSERT(!(info->initialized & (1 << HOOK2MANIP(hooknum))));
/* What we've got will look like inverse of reply. Normally
this is what is in the conntrack, except for prior
manipulations (future optimization: if num_manips == 0,
orig_tp =
conntrack->tuplehash[IP_CT_DIR_ORIGINAL].tuple) */
// 根据连接的回应方向的tuple进行反转得到原始方向的tuple
invert_tuplepr(&orig_tp,
&conntrack->tuplehash[IP_CT_DIR_REPLY].tuple);
#if 0
{
unsigned int i;
DEBUGP("Hook %u (%s), ", hooknum,
HOOK2MANIP(hooknum)==IP_NAT_MANIP_SRC ? "SRC" : "DST");
DUMP_TUPLE(&orig_tp);
DEBUGP("Range %p: ", mr);
for (i = 0; i < mr->rangesize; i++) {
DEBUGP("%u:%s%s%s %u.%u.%u.%u - %u.%u.%u.%u %u - %u\n",
i,
(mr->range[i].flags & IP_NAT_RANGE_MAP_IPS)
? " MAP_IPS" : "",
(mr->range[i].flags
& IP_NAT_RANGE_PROTO_SPECIFIED)
? " PROTO_SPECIFIED" : "",
(mr->range[i].flags & IP_NAT_RANGE_FULL)
? " FULL" : "",
NIPQUAD(mr->range[i].min_ip),
NIPQUAD(mr->range[i].max_ip),
mr->range[i].min.all,
mr->range[i].max.all);
}
}
#endif
do {
// 找一个未使用的进行了转换后的tuple结构参数,mr是NAT规则确定的要转换后的
// 地址端口参数, new_tuple保持转换后的连接原始方向的tuple
if (!get_unique_tuple(&new_tuple, &orig_tp, mr, conntrack,
hooknum)) {
DEBUGP("ip_nat_setup_info: Can't get unique for %p.\n",
conntrack);
return NF_DROP;
}
#if 0
DEBUGP("Hook %u (%s) %p\n", hooknum,
HOOK2MANIP(hooknum)==IP_NAT_MANIP_SRC ? "SRC" : "DST",
conntrack);
DEBUGP("Original: ");
DUMP_TUPLE(&orig_tp);
DEBUGP("New: ");
DUMP_TUPLE(&new_tuple);
#endif
/* We now have two tuples (SRCIP/SRCPT/DSTIP/DSTPT):
the original (A/B/C/D') and the mangled one (E/F/G/H').
We're only allowed to work with the SRC per-proto
part, so we create inverses of both to start, then
derive the other fields we need. */
/* Reply connection: simply invert the new tuple
(G/H/E/F') */
// 建立连接地址转换后的反向的tuple,这使netfilter能自动对连接的反方向数据
// 进行处理,也就是说定义了一条SNAT规则后,并不需要再定义一条DNAT规则来处理
// 返回的数据,netfilter已经自动处理了
invert_tuplepr(&reply, &new_tuple);
/* Alter conntrack table so it recognizes replies.
If fail this race (reply tuple now used), repeat. */
// 修改连接参数使能正确识别返回数据,如果reply已经对应一条连接
// ip_conntrack_alter_reply()函数返回0,表示要继续修改转换后的参数值
} while (!ip_conntrack_alter_reply(conntrack, &reply));
/* FIXME: We can simply used existing conntrack reply tuple
here --RR */
/* Create inverse of original: C/D/A/B' */
invert_tuplepr(&inv_tuple, &orig_tp);
/* Has source changed?. */
// 源NAT
if (!ip_ct_tuple_src_equal(&new_tuple, &orig_tp)) {
/* In this direction, a source manip. */
// 连接正方向是SNAT
info->manips[info->num_manips++] =
((struct ip_nat_info_manip)
{ IP_CT_DIR_ORIGINAL, hooknum,
IP_NAT_MANIP_SRC, new_tuple.src });
IP_NF_ASSERT(info->num_manips < IP_NAT_MAX_MANIPS);
/* In the reverse direction, a destination manip. */
// 连接反方向是DNAT
info->manips[info->num_manips++] =
((struct ip_nat_info_manip)
{ IP_CT_DIR_REPLY, opposite_hook[hooknum],
IP_NAT_MANIP_DST, orig_tp.src });
IP_NF_ASSERT(info->num_manips <= IP_NAT_MAX_MANIPS);
}
/* Has destination changed? */
// 目的NAT
if (!ip_ct_tuple_dst_equal(&new_tuple, &orig_tp)) {
/* In this direction, a destination manip */
// 连接正方向是DNAT
info->manips[info->num_manips++] =
((struct ip_nat_info_manip)
{ IP_CT_DIR_ORIGINAL, hooknum,
IP_NAT_MANIP_DST, reply.src });
IP_NF_ASSERT(info->num_manips < IP_NAT_MAX_MANIPS);
/* In the reverse direction, a source manip. */
// 连接反方向是SNAT
info->manips[info->num_manips++] =
((struct ip_nat_info_manip)
{ IP_CT_DIR_REPLY, opposite_hook[hooknum],
IP_NAT_MANIP_SRC, inv_tuple.src });
IP_NF_ASSERT(info->num_manips <= IP_NAT_MAX_MANIPS);
}
/* If there's a helper, assign it; based on new tuple. */
// 对于主连接检查是否有应用层协议的NAT helper结构
if (!conntrack->master)
info->helper = LIST_FIND(&helpers, helper_cmp, struct ip_nat_helper *,
&reply);
/* It's done. */
// 完成该方向的NAT info初始化
info->initialized |= (1 << HOOK2MANIP(hooknum));
// 将NAT info添加到HASH表中
if (in_hashes) {
IP_NF_ASSERT(info->bysource.conntrack);
replace_in_hashes(conntrack, info);
} else {
place_in_hashes(conntrack, info);
}
return NF_ACCEPT;
}
8. 结论
Linux下的NAT流程可以大致表示如下:
hook_ops
|
V
ip_nat_fn()
|
V 否
是否是新连接------------
| |
| 是 |
| |
V |
ip_nat_rule_find() |
| |
ip_snat_taget() |
ip_dnat_target() |
| |
V |
ip_nat_setup_info() |
| |
| <---------------+
|
V
do_bindings()
|
V
hook返回
总体来说,netfilter的NAT整体思路比较清楚,读起来比较方便。在NAT info结构中的manips有6项,也就是说对同一个包应该可以作3次NAT。
有点疑问的是对于不进行NAT操作的包,也进行了null_binding,似乎没什么必要。