求有向图的强连通分量

#include <iostream>

//有向图的强连通分量
//翻转边集 深度优先遍历

using namespace std;

typedef struct{
  int vexs[10];
  int edges[10][10];
  int n;
  int e;
}MGraph;

void CreateGraphM(MGraph *G){

  int N1,N2;
  int i,j,k;

  printf("Enter the number of vertexs and edges: \n");
  scanf("%d %d",&G->n,&G->e);
  k=G->n;

  for(i=0;i<k;i++)
    scanf("%d",&G->vexs[i]);

  for(i=0;i<G->n;i++)
    for(j=0;j<G->n;j++)
      G->edges[i][j]=0;
  

  cout<<"EDGES: "<<endl;

  for(k=0;k<G->e;k++){
    cin>>N1>>N2;
    G->edges[N1-1][N2-1]=1;
  }

  return;
}

typedef struct{

  int visited[10];
  int finishing_time[10];
  int discovery_time[10];
  int times;

}DFS_DATA;

MGraph TransGraph(MGraph *G){

  int i;
  int j;

  MGraph TMP;

  TMP.n = G->n;
  TMP.e = G->e;

  for(i=0;i<G->n;i++)
    TMP.vexs[i]=G->vexs[i];

  for(i=0;i<G->n;i++)
    for(j=0;j<G->n;j++)
      TMP.edges[i][j]=0;

  for(i=0;i<G->n;i++)
    for(j=0;j<G->n;j++)
      if(G->edges[i][j]==1){
        TMP.edges[j][i]=1;
      }

  return TMP;
}



void DFSM(MGraph *G,int index,DFS_DATA *DATA){

  DATA->times++;

  DATA->discovery_time[index]=DATA->times;

  DATA->visited[index]=1;

  cout<<G->vexs[index]<<" ";

  for(int i=0;i<G->n;i++)
    if(G->edges[index][i]==1 && DATA->visited[i]==0){
      DFSM(G,i,DATA);
    }

  DATA->finishing_time[index]=DATA->times;
  DATA->times++;
}

void Strongly_Components(MGraph *G){

  DFS_DATA *DATA = new DFS_DATA;

  MGraph TMP;

  int NUMBER=1;

  for(int i=0;i<G->n;i++){
    DATA->visited[i]=0;
  }

  for(int i=0;i<G->n;i++){
    DATA->finishing_time[i]=0;
    DATA->discovery_time[i]=0;
  }

  DATA->times=0;

  TMP=TransGraph(G);

  for(int i=0;i<G->n;i++)
    if(DATA->visited[i]==0){
      cout<<"Strong Component "<<NUMBER<<": ";
      DFSM(&TMP,i,DATA);
      NUMBER++;
      cout<<endl;
    }

  return;
}

int main()
{
  MGraph *G = new MGraph;

  CreateGraphM(G);

  Strongly_Components(G);

  delete G;

  return 0;
}



这算法很简单 就是先翻转G 就是所有边的方向倒转
然后用DFS看图能分成几个部分, 这几个部分就是强连通分量

你可能感兴趣的:(算法,J#)