HDU 3081 Marriage Match II (SAP+二分匹配)

Marriage Match II

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 1095    Accepted Submission(s): 393


Problem Description
Presumably, you all have known the question of stable marriage match. A girl will choose a boy; it is similar as the game of playing house we used to play when we are kids. What a happy time as so many friends playing together. And it is normal that a fight or a quarrel breaks out, but we will still play together after that, because we are kids. 
Now, there are 2n kids, n boys numbered from 1 to n, and n girls numbered from 1 to n. you know, ladies first. So, every girl can choose a boy first, with whom she has not quarreled, to make up a family. Besides, the girl X can also choose boy Z to be her boyfriend when her friend, girl Y has not quarreled with him. Furthermore, the friendship is mutual, which means a and c are friends provided that a and b are friends and b and c are friend. 
Once every girl finds their boyfriends they will start a new round of this game—marriage match. At the end of each round, every girl will start to find a new boyfriend, who she has not chosen before. So the game goes on and on.
Now, here is the question for you, how many rounds can these 2n kids totally play this game?
 

 

Input
There are several test cases. First is a integer T, means the number of test cases. 
Each test case starts with three integer n, m and f in a line (3<=n<=100,0<m<n*n,0<=f<n). n means there are 2*n children, n girls(number from 1 to n) and n boys(number from 1 to n).
Then m lines follow. Each line contains two numbers a and b, means girl a and boy b had never quarreled with each other. 
Then f lines follow. Each line contains two numbers c and d, means girl c and girl d are good friends.
 

 

Output
For each case, output a number in one line. The maximal number of Marriage Match the children can play.
 

 

Sample Input
1 4 5 2 1 1 2 3 3 2 4 2 4 4 1 4 2 3
 

 

Sample Output
2
 

 

Author
starvae
 

 

Source
 

 

Recommend
lcy
 

 

 

女生和男生配对,有些女生相互是朋友,每个女生也可以跟她朋友所配对的男生配对

每次配对,每个女生都要跟不同的男生配对。问最多能配对几轮。

最大流,用并查集处理女生之间的朋友关系,最少配0轮,最多配n轮,二分解之,源点向女生建边,男生向汇点建边,容量均为mid,女生跟所有能配对的男生连线,容量为1如果最大流 = mid * n,那mid就就能做到mid轮配对

 

#include<iostream>
#include<cstdio>
#include<cstring>
#include<queue>

using namespace std;

const int VM=1010;
const int EM=500010;
const int INF=0x3f3f3f3f;

int n,m,f,cnt,head[VM];
int dep[VM],gap[VM],cur[VM],aug[VM],pre[VM];
int father[VM],vis[VM][VM];

struct Edge{
    int u,v,nxt;
    int cap;
}edge[EM];

struct node{
    int x,y;
}child[EM];

void makeSet(){
    for(int i=1;i<=n;i++){
        father[i]=i;
    }
}

int findSet(int x){
    if(x!=father[x]){
        father[x]=findSet(father[x]);
    }
    return father[x];
}

void Union(int x,int y){
    int fx=findSet(x);
    int fy=findSet(y);
    if(fx!=fy)
        father[fx]=fy;
}

void addedge(int cu,int cv,int cw){
    edge[cnt].u=cu;  edge[cnt].v=cv;  edge[cnt].cap=cw;
    edge[cnt].nxt=head[cu];  head[cu]=cnt++;
    edge[cnt].u=cv;  edge[cnt].v=cu;  edge[cnt].cap=0;
    edge[cnt].nxt=head[cv];  head[cv]=cnt++;
}

int src,des;

int SAP(int n){
    int max_flow=0,u=src,v;
    int id,mindep;
    aug[src]=INF;
    pre[src]=-1;
    memset(dep,0,sizeof(dep));
    memset(gap,0,sizeof(gap));
    gap[0]=n;
    for(int i=0;i<=n;i++)
        cur[i]=head[i]; // 初始化当前弧为第一条弧
    while(dep[src]<n){
        int flag=0;
        if(u==des){
            max_flow+=aug[des];
            for(v=pre[des];v!=-1;v=pre[v]){     // 路径回溯更新残留网络
                id=cur[v];
                edge[id].cap-=aug[des];
                edge[id^1].cap+=aug[des];
                aug[v]-=aug[des];   // 修改可增广量,以后会用到
                if(edge[id].cap==0) // 不回退到源点,仅回退到容量为0的弧的弧尾
                    u=v;
            }
        }
        for(int i=cur[u];i!=-1;i=edge[i].nxt){
            v=edge[i].v;    // 从当前弧开始查找允许弧
            if(edge[i].cap>0 && dep[u]==dep[v]+1){  // 找到允许弧
                flag=1;
                pre[v]=u;
                cur[u]=i;
                aug[v]=min(aug[u],edge[i].cap);
                u=v;
                break;
            }
        }
        if(!flag){
            if(--gap[dep[u]]==0)    /* gap优化,层次树出现断层则结束算法 */
                break;
            mindep=n;
            cur[u]=head[u];
            for(int i=head[u];i!=-1;i=edge[i].nxt){
                v=edge[i].v;
                if(edge[i].cap>0 && dep[v]<mindep){
                    mindep=dep[v];
                    cur[u]=i;   // 修改标号的同时修改当前弧
                }
            }
            dep[u]=mindep+1;
            gap[dep[u]]++;
            if(u!=src)  // 回溯继续寻找允许弧
                u=pre[u];
        }
    }
    return max_flow;
}

void build(int mid){
    src=0,des=2*n+1;
    cnt=0;
    memset(head,-1,sizeof(head));
    for(int i=1;i<=n;i++){
        addedge(src,i,mid);
        addedge(i+n,des,mid);
    }
    memset(vis,0,sizeof(vis));
    for(int i=0;i<m;i++){
        int a=child[i].x;
        int b=child[i].y;
        for(int j=1;j<=n;j++)
            if(father[a]==father[j] && !vis[j][b]){
                vis[j][b]=1;
                addedge(j,n+b,1);
            }
    }
}

int main(){

    //freopen("input.txt","r",stdin);

    int t;
    scanf("%d",&t);
    while(t--){
        scanf("%d%d%d",&n,&m,&f);
        for(int i=0;i<m;i++)
            scanf("%d%d",&child[i].x,&child[i].y);
        makeSet();
        int a,b;
        while(f--){
            scanf("%d%d",&a,&b);
            Union(a,b);
        }
        for(int i=1;i<=n;i++)
            father[i]=findSet(i);
        int low=0,high=n,ans=0,mid;
        while(low<=high){
            mid=(low+high)>>1;
            build(mid);
            if(SAP(2*n+2)==n*mid){
                low=mid+1;
                ans=mid;
            }else
                high=mid-1;
        }
        printf("%d\n",ans);
    }
    return 0;
}

 

你可能感兴趣的:(c,算法)