uclinux内核的console

快乐虾

http://blog.csdn.net/lights_joy/

[email protected]

本文适用于

ADI bf561 DSP

优视BF561EVB开发板

uclinux-2008r1.5-rc3 (smp patch)

Visual DSP++ 5.0 (update 5)

欢迎转载,但请保留作者信息


内核中与console相关的结构体可以分为通用定义与不同体系结构的定义两部分,通用定义与具体的硬件无关,它只是定义了一类硬件的通用参数与接口,不同的体系结构下还需要加上一些特有的东西。

1.1 串口通用定义
1.1.1 uart_ops
这个结构体的定义位于include/linux/serial_core.h,它定义了UART要实现的操作:

/*

* This structure describes all the operations that can be

* done on the physical hardware.

*/

struct uart_ops {

unsigned int (*tx_empty)(struct uart_port *);

void (*set_mctrl)(struct uart_port *, unsigned int mctrl);

unsigned int (*get_mctrl)(struct uart_port *);

void (*stop_tx)(struct uart_port *);

void (*start_tx)(struct uart_port *);

void (*send_xchar)(struct uart_port *, char ch);

void (*stop_rx)(struct uart_port *);

void (*enable_ms)(struct uart_port *);

void (*break_ctl)(struct uart_port *, int ctl);

int (*startup)(struct uart_port *);

void (*shutdown)(struct uart_port *);

void (*set_termios)(struct uart_port *, struct ktermios *new,

struct ktermios *old);

void (*pm)(struct uart_port *, unsigned int state,

unsigned int oldstate);

int (*set_wake)(struct uart_port *, unsigned int state);

/*

* Return a string describing the type of the port

*/

const char *(*type)(struct uart_port *);

/*

* Release IO and memory resources used by the port.

* This includes iounmap if necessary.

*/

void (*release_port)(struct uart_port *);

/*

* Request IO and memory resources used by the port.

* This includes iomapping the port if necessary.

*/

int (*request_port)(struct uart_port *);

void (*config_port)(struct uart_port *, int);

int (*verify_port)(struct uart_port *, struct serial_struct *);

int (*ioctl)(struct uart_port *, unsigned int, unsigned long);

};

1.1.2 uart_port
这个结构体的定义位于include/linux/serial_core.h,从它的位置可以看出,这是一个与具体硬件无关的结构体,它提供了对UART的描述信息,对于某个具体的UART,可能只使用其中的某些字段。

struct uart_port {

spinlock_t lock; /* port lock */

unsigned int iobase; /* in/out[bwl] */

unsigned char __iomem *membase; /* read/write[bwl] */

unsigned int irq; /* irq number */

unsigned int uartclk; /* base uart clock */

unsigned int fifosize; /* tx fifo size */

unsigned char x_char; /* xon/xoff char */

unsigned char regshift; /* reg offset shift */

unsigned char iotype; /* io access style */

unsigned char unused1;

unsigned int read_status_mask; /* driver specific */

unsigned int ignore_status_mask; /* driver specific */

struct uart_info *info; /* pointer to parent info */

struct uart_icount icount; /* statistics */

struct console *cons; /* struct console, if any */

upf_t flags;

unsigned int mctrl; /* current modem ctrl settings */

unsigned int timeout; /* character-based timeout */

unsigned int type; /* port type */

const struct uart_ops *ops;

unsigned int custom_divisor;

unsigned int line; /* port index */

unsigned long mapbase; /* for ioremap */

struct device *dev; /* parent device */

unsigned char hub6; /* this should be in the 8250 driver */

unsigned char unused[3];

void *private_data; /* generic platform data pointer */

};

在内核中,没有为uart_port定义独立的变量,它将从属于某个具体的serial_port,对于bf561,它将从属于bfin_serial_port这一结构体。

实际上内核只使用了以下几个成员:

l uartclk:这个值将设置为BF561的系统时钟频率,在我的系统中,它将为99M。

l ops:定义对UART的操作函数,指向bfin_serial_pops这一变量。

l line:串口序号,只有一个串口,恒为0。

l iotype:取UPIO_MEM,即直接寄存器访问方式。

l membase:指向UART_THR(0xFFC0 0400),即UART的发送寄存器。

l mapbase:与membase相同。

l irq:内核中中断描述数组(irq_desc)的序号,指UART接收中断(IRQ_UART_RX)。

l flags:配置为UPF_BOOT_AUTOCONF。

1.2 不同体系结构下的串口定义
1.2.1 bfin_serial_port
这个结构体的定义在include/asm/mach/bfin-serial-5xx.h中:

struct bfin_serial_port {

struct uart_port port;

unsigned int old_status;

unsigned int lsr;

#ifdef CONFIG_SERIAL_BFIN_DMA

int tx_done;

int tx_count;

struct circ_buf rx_dma_buf;

struct timer_list rx_dma_timer;

int rx_dma_nrows;

unsigned int tx_dma_channel;

unsigned int rx_dma_channel;

struct work_struct tx_dma_workqueue;

#endif

};

此结构体在uart_port的基础上,扩充了几个成员。

在内核中,有这样的定义:

struct bfin_serial_port bfin_serial_ports[NR_PORTS];

在这里,NR_PORTS的值为1,对UART的所有操作都将通过这一变量来完成。

需要注意的是rx_dma_timer这个成员,在串口初始化的时候,它将调用

init_timer(&(bfin_serial_ports[i].rx_dma_timer));

向内核注册一个时钟源。

1.3 console
这个结构体的定义在include/linux/console.h中,它定义了一个console驱动需要提供的信息及其必须实现的一些操作:

/*

* The interface for a console, or any other device that wants to capture

* console messages (printer driver?)

*

* If a console driver is marked CON_BOOT then it will be auto-unregistered

* when the first real console is registered. This is for early-printk drivers.

*/

struct console {

char name[16];

void (*write)(struct console *, const char *, unsigned);

int (*read)(struct console *, char *, unsigned);

struct tty_driver *(*device)(struct console *, int *);

void (*unblank)(void);

int (*setup)(struct console *, char *);

short flags;

short index;

int cflag;

void *data;

struct console *next;

};

在内核中,对此结构体初始化为:

static struct console bfin_serial_console = {

.name = BFIN_SERIAL_NAME, // 即”ttyBF”

.write = bfin_serial_console_write,

.device = uart_console_device,

.setup = bfin_serial_console_setup,

.flags = CON_PRINTBUFFER,

.index = -1,

.data = &bfin_serial_reg,

};

而console中的cflag则保存了串口配置,如CREAD | HUPCL | CLOCAL | B57600 | CS8,使用它即可知道当前的串口配置。

flags的值在初始化完成后则变成了CON_PRINTBUFFER | CON_ENABLED | CON_CONSDEV。

index的值在初始化完成后变成0,因为只使用serial console。

这里值得注意的是setup回调函数,当console初始化时,它需要初始化与此console相关的硬件,此时它将调用setup这一回调函数来完成此工作。

1.4 ktermios
这个结构体用于定义一个终端需要使用的参数:

struct ktermios {

tcflag_t c_iflag; /* input mode flags */

tcflag_t c_oflag; /* output mode flags */

tcflag_t c_cflag; /* control mode flags */

tcflag_t c_lflag; /* local mode flags */

cc_t c_line; /* line discipline */

cc_t c_cc[NCCS]; /* control characters */

speed_t c_ispeed; /* input speed */

speed_t c_ospeed; /* output speed */

};

它并没有定义相关的结构体,仅仅用于向bfin_serial_set_termios传递参数。

几个比较重要的值:

c_cflag:串口的波特率、校验位、字长这几个参数都通过这个标志来传递。

1 参考资料


本文来自CSDN博客,转载请标明出处:http://blog.csdn.net/lights_joy/archive/2009/01/31/3855503.aspx

在内核启动初期,为了尽可能早地输出一些调试信息,可以在配置时选择使用early console,其选项为CONFIG_EARLY_PRINTK,然后通过earlyprintk=??传递一个参数进去。当内核检测到earlyprintk这一参数时,它将调用setup_early_printk函数初始化BF561内部的UART,然后注册一个console,这样printk的信息就可以通过串口输出。earlyprintk参数的分析参见《uclinux内核参数处理(5):earlyprintk》。

1.1 全局变量
1.1.1 bfin_serial_pops
这个全局变量用以指定对bf561内部串口进行操作的一些回调函数,其定义为:

static struct uart_ops bfin_serial_pops = {

.tx_empty = bfin_serial_tx_empty,

.set_mctrl = bfin_serial_set_mctrl,

.get_mctrl = bfin_serial_get_mctrl,

.stop_tx = bfin_serial_stop_tx,

.start_tx = bfin_serial_start_tx,

.stop_rx = bfin_serial_stop_rx,

.enable_ms = bfin_serial_enable_ms,

.break_ctl = bfin_serial_break_ctl,

.startup = bfin_serial_startup,

.shutdown = bfin_serial_shutdown,

.set_termios = bfin_serial_set_termios,

.type = bfin_serial_type,

.release_port = bfin_serial_release_port,

.request_port = bfin_serial_request_port,

.config_port = bfin_serial_config_port,

.verify_port = bfin_serial_verify_port,

};

1.1.2 bfin_serial_ports
这个全局变量的定义为:

struct bfin_serial_port bfin_serial_ports[NR_PORTS];

在这里NR_PORTS的值为1。

这个全局变量的初始化由bfin_serial_init_ports函数完成,经过此函数的初始化后,此变量的值为:

struct bfin_serial_port {

struct uart_port port;

struct uart_port {

spinlock_t lock; /* port lock */

unsigned int iobase; /* in/out[bwl] */

unsigned char __iomem *membase; /*指向UART_THR(0xFFC0 0400),即UART的发送寄存器。 */

unsigned int irq; /* 取IRQ_UART_RX */

unsigned int uartclk; /* 取SCLK */

unsigned int fifosize; /* tx fifo size */

unsigned char x_char; /* xon/xoff char */

unsigned char regshift; /* reg offset shift */

unsigned char iotype; /* UPIO_MEM,以直接寄存器访问方式进行操作 */

unsigned char unused1;

unsigned int read_status_mask; /* driver specific */

unsigned int ignore_status_mask; /* driver specific */

struct uart_info *info; /* pointer to parent info */

struct uart_icount icount; /* statistics */

struct console *cons; /* struct console, if any */

upf_t flags; /* 取UPF_BOOT_AUTOCONF */

unsigned int mctrl; /* current modem ctrl settings */

unsigned int timeout; /* character-based timeout */

unsigned int type; /* port type */

const struct uart_ops *ops; /* 指向bfin_serial_pops */

unsigned int custom_divisor;

unsigned int line; /* 串口序号,取0 */

unsigned long mapbase; /*指向UART_THR(0xFFC0 0400),即UART的发送寄存器。 */

struct device *dev; /* parent device */

unsigned char hub6; /* this should be in the 8250 driver */

unsigned char unused[3];

void *private_data; /* generic platform data pointer */

};

unsigned int old_status;

unsigned int lsr;

#ifdef CONFIG_SERIAL_BFIN_DMA

int tx_done; /* 初始化为1 */

int tx_count; /* 初始化为0 */

struct circ_buf rx_dma_buf;

struct timer_list rx_dma_timer;

int rx_dma_nrows;

unsigned int tx_dma_channel; /* 取18,即CH_UART_TX */

unsigned int rx_dma_channel; /* 取17,即CH_UART_RX */

struct work_struct tx_dma_workqueue;

#endif

};

1.1.3 bfin_early_serial_console
这个就是得以使用的early console的全局变量,其定义为:

static struct __init console bfin_early_serial_console = {

.name = "early_BFuart",

.write = early_serial_write,

.device = uart_console_device,

.flags = CON_PRINTBUFFER,

.setup = bfin_serial_console_setup,

.index = -1,

.data = &bfin_serial_reg,

};

经过初始化后,flags的值将变为 CON_PRINTBUFFER | CON_BOOT 。

1.1.4 bfin_serial_reg
这个全局变量的定义为:

static struct uart_driver bfin_serial_reg = {

.owner = THIS_MODULE,

.driver_name = "bfin-uart",

.dev_name = BFIN_SERIAL_NAME,

.major = BFIN_SERIAL_MAJOR,

.minor = BFIN_SERIAL_MINOR,

.nr = NR_PORTS,

.cons = BFIN_SERIAL_CONSOLE,

};

1.2 初始化过程
1.2.1 setup_early_printk
当内核调用此函数时,仅仅做了一些最基本的硬件初始化工作,如CCLK,EBIU等。下面看看它的实现:

int __init setup_early_printk(char *buf)

{

/* Crashing in here would be really bad, so check both the var

and the pointer before we start using it

*/

if (!buf)

return 0;

if (!*buf)

return 0;

if (early_console != NULL)

return 0;

#ifdef CONFIG_SERIAL_BFIN

/* Check for Blackfin Serial */

if (!strncmp(buf, "serial,uart", 11)) {

buf += 11;

early_console = earlyserial_init(buf);

}

#endif

#ifdef CONFIG_FB

/* TODO: add framebuffer console support */

#endif

if (likely(early_console)) {

early_console->flags |= CON_BOOT;

register_console(early_console);

printk(KERN_INFO "early printk enabled on %s%d/n",

early_console->name,

early_console->index);

}

return 0;

}

这段代码在简单判断后,有两个关键的调用。第一个是earlyserial_init,用以初始化串口的硬件参数。第二个调用是register_console,用以注册一个console结构体,同时输出printk缓冲区中的已有数据。

1.2.2 earlyserial_init
这一函数的实现为:

static struct console * __init earlyserial_init(char *buf)

{

int baud, bit;

char parity;

unsigned int serial_port = DEFAULT_PORT;

unsigned int cflag = DEFAULT_CFLAG;

serial_port = simple_strtoul(buf, &buf, 10);

buf++;

cflag = 0;

baud = simple_strtoul(buf, &buf, 10);

switch (baud) {

case 1200:

cflag |= B1200;

break;

case 2400:

cflag |= B2400;

break;

case 4800:

cflag |= B4800;

break;

case 9600:

cflag |= B9600;

break;

case 19200:

cflag |= B19200;

break;

case 38400:

cflag |= B38400;

break;

case 115200:

cflag |= B115200;

break;

default:

cflag |= B57600;

}

parity = buf[0];

buf++;

switch (parity) {

case 'e':

cflag |= PARENB;

break;

case 'o':

cflag |= PARODD;

break;

}

bit = simple_strtoul(buf, &buf, 10);

switch (bit) {

case 5:

cflag |= CS5;

break;

case 6:

cflag |= CS5;

break;

case 7:

cflag |= CS5;

break;

default:

cflag |= CS8;

}

#ifdef CONFIG_SERIAL_BFIN

return bfin_earlyserial_init(serial_port, cflag);

#else

return NULL;

#endif

}

很简单,实际上就是提取earlyprintk中的参数,将之转换为serial_port和cflag两个数值,然后调用bfin_earlyserial_init函数来初始化串口。

1.2.3 bfin_earlyserial_init
此函数如下所示:

struct console __init *bfin_earlyserial_init(unsigned int port,

unsigned int cflag)

{

struct bfin_serial_port *uart;

struct ktermios t;

if (port == -1 || port >= nr_ports)

port = 0;

bfin_serial_init_ports();

bfin_early_serial_console.index = port;

uart = &bfin_serial_ports[port];

t.c_cflag = cflag;

t.c_iflag = 0;

t.c_oflag = 0;

t.c_lflag = ICANON;

t.c_line = port;

bfin_serial_set_termios(&uart->port, &t, &t);

return &bfin_early_serial_console;

}

这个函数除了初始化硬件参数之外,还要构造一个console结构体。

1.2.3.1 bfin_serial_init_ports
这个函数由bfin_earlyserial_init调用,其实现为:

static void __init bfin_serial_init_ports(void)

{

static int first = 1;

int i;

if (!first)

return;

first = 0;

for (i = 0; i < nr_ports; i++) {

bfin_serial_ports[i].port.uartclk = get_sclk();

bfin_serial_ports[i].port.ops = &bfin_serial_pops;

bfin_serial_ports[i].port.line = i;

bfin_serial_ports[i].port.iotype = UPIO_MEM;

bfin_serial_ports[i].port.membase =

(void __iomem *)bfin_serial_resource[i].uart_base_addr;

bfin_serial_ports[i].port.mapbase =

bfin_serial_resource[i].uart_base_addr;

bfin_serial_ports[i].port.irq =

bfin_serial_resource[i].uart_irq;

bfin_serial_ports[i].port.flags = UPF_BOOT_AUTOCONF;

#ifdef CONFIG_SERIAL_BFIN_DMA

bfin_serial_ports[i].tx_done = 1;

bfin_serial_ports[i].tx_count = 0;

bfin_serial_ports[i].tx_dma_channel =

bfin_serial_resource[i].uart_tx_dma_channel;

bfin_serial_ports[i].rx_dma_channel =

bfin_serial_resource[i].uart_rx_dma_channel;

init_timer(&(bfin_serial_ports[i].rx_dma_timer));

#endif

#ifdef CONFIG_SERIAL_BFIN_CTSRTS

init_timer(&(bfin_serial_ports[i].cts_timer));

bfin_serial_ports[i].cts_pin =

bfin_serial_resource[i].uart_cts_pin;

bfin_serial_ports[i].rts_pin =

bfin_serial_resource[i].uart_rts_pin;

#endif

bfin_serial_hw_init(&bfin_serial_ports[i]);

}

}

在这里nr_ports的值为1,即只有一个串口。从上述代码可以看出,它只是设置了uart结构体的内容,但是并没有初始化硬件。最后一个函数调用bfin_serial_hw_init,看起来好像要初始化硬件的样子,实际上什么也没做。

static void bfin_serial_hw_init(struct bfin_serial_port *uart)

{

#ifdef CONFIG_SERIAL_BFIN_UART0

peripheral_request(P_UART0_TX, DRIVER_NAME);

peripheral_request(P_UART0_RX, DRIVER_NAME);

#endif

#ifdef CONFIG_SERIAL_BFIN_CTSRTS

if (uart->cts_pin >= 0) {

gpio_request(uart->cts_pin, DRIVER_NAME);

gpio_direction_input(uart->cts_pin);

}

if (uart->rts_pin >= 0) {

gpio_request(uart->rts_pin, DRIVER_NAME);

gpio_direction_input(uart->rts_pin, 0);

}

#endif

}

1.2.3.2 bfin_serial_set_termios
这个函数将实际配置硬件参数,与下文所示的普通console功能相同,此时传递进来的将是bfin_serial_ports[0]这个全局变量中的port的指针,实际上也是bfin_serial_ports[0]的首地址,因此在此函数一开头就将之转换为bfin_serial_port类型的指针。

static void

bfin_serial_set_termios(struct uart_port *port, struct ktermios *termios,

struct ktermios *old)

{

struct bfin_serial_port *uart = (struct bfin_serial_port *)port;

unsigned long flags;

unsigned int baud, quot;

unsigned short val, ier, lcr = 0;

switch (termios->c_cflag & CSIZE) {

case CS8:

lcr = WLS(8);

break;

case CS7:

lcr = WLS(7);

break;

case CS6:

lcr = WLS(6);

break;

case CS5:

lcr = WLS(5);

break;

default:

printk(KERN_ERR "%s: word lengh not supported/n",

__FUNCTION__);

}

if (termios->c_cflag & CSTOPB)

lcr |= STB;

if (termios->c_cflag & PARENB)

lcr |= PEN;

if (!(termios->c_cflag & PARODD))

lcr |= EPS;

if (termios->c_cflag & CMSPAR)

lcr |= STP;

port->read_status_mask = OE;

if (termios->c_iflag & INPCK)

port->read_status_mask |= (FE | PE);

if (termios->c_iflag & (BRKINT | PARMRK))

port->read_status_mask |= BI;

/*

* Characters to ignore

*/

port->ignore_status_mask = 0;

if (termios->c_iflag & IGNPAR)

port->ignore_status_mask |= FE | PE;

if (termios->c_iflag & IGNBRK) {

port->ignore_status_mask |= BI;

/*

* If we're ignoring parity and break indicators,

* ignore overruns too (for real raw support).

*/

if (termios->c_iflag & IGNPAR)

port->ignore_status_mask |= OE;

}

baud = uart_get_baud_rate(port, termios, old, 0, port->uartclk/16);

quot = uart_get_divisor(port, baud);

spin_lock_irqsave(&uart->port.lock, flags);

UART_SET_ANOMALY_THRESHOLD(uart, USEC_PER_SEC / baud * 15);

/* Disable UART */

ier = UART_GET_IER(uart);

#ifdef CONFIG_BF54x

UART_CLEAR_IER(uart, 0xF);

#else

UART_PUT_IER(uart, 0);

#endif

#ifndef CONFIG_BF54x

/* Set DLAB in LCR to Access DLL and DLH */

val = UART_GET_LCR(uart);

val |= DLAB;

UART_PUT_LCR(uart, val);

SSYNC();

#endif

UART_PUT_DLL(uart, quot & 0xFF);

SSYNC();

UART_PUT_DLH(uart, (quot >> 8) & 0xFF);

SSYNC();

#ifndef CONFIG_BF54x

/* Clear DLAB in LCR to Access THR RBR IER */

val = UART_GET_LCR(uart);

val &= ~DLAB;

UART_PUT_LCR(uart, val);

SSYNC();

#endif

UART_PUT_LCR(uart, lcr);

/* Enable UART */

#ifdef CONFIG_BF54x

UART_SET_IER(uart, ier);

#else

UART_PUT_IER(uart, ier);

#endif

val = UART_GET_GCTL(uart);

val |= UCEN;

UART_PUT_GCTL(uart, val);

spin_unlock_irqrestore(&uart->port.lock, flags);

}

此时传递进来的termios变量中的几个值:

c_cflag:此成员中保存了串口的硬件参数。

c_lflag:此成员的值为ICANON。

其它值均为0。

还有一点需要注意,在使用u-boot之类的引导程序时,通常会打开接收中断或者发送中断,而在不使用引导程序时,UART_IER复位后的值为0,为了模拟引导程序,可以在最后还原UART_IER时直接打开接收中断。类似于下面的语句:

/* Enable UART */

#ifdef CONFIG_BF54x

UART_SET_IER(uart, ier);

#else

ier |= (ERBFI | ETBEI);

UART_PUT_IER(uart, ier);

#endif

1.2.4 register_console
这个和普通console的功能相同,其实现为:

/*

* The console driver calls this routine during kernel initialization

* to register the console printing procedure with printk() and to

* print any messages that were printed by the kernel before the

* console driver was initialized.

*/

void register_console(struct console *console)

{

int i;

unsigned long flags;

struct console *bootconsole = NULL;

if (console_drivers) {

if (console->flags & CON_BOOT)

return;

if (console_drivers->flags & CON_BOOT)

bootconsole = console_drivers;

}

if (preferred_console < 0 || bootconsole || !console_drivers)

preferred_console = selected_console;

/*

* See if we want to use this console driver. If we

* didn't select a console we take the first one

* that registers here.

*/

if (preferred_console < 0) {

if (console->index < 0)

console->index = 0;

if (console->setup == NULL ||

console->setup(console, NULL) == 0) {

console->flags |= CON_ENABLED | CON_CONSDEV;

preferred_console = 0;

}

}

/*

* See if this console matches one we selected on

* the command line.

*/

for (i = 0; i < MAX_CMDLINECONSOLES && console_cmdline[i].name[0];

i++) {

if (strcmp(console_cmdline[i].name, console->name) != 0)

continue;

if (console->index >= 0 &&

console->index != console_cmdline[i].index)

continue;

if (console->index < 0)

console->index = console_cmdline[i].index;

if (console->setup &&

console->setup(console, console_cmdline[i].options) != 0)

break;

console->flags |= CON_ENABLED;

console->index = console_cmdline[i].index;

if (i == selected_console) {

console->flags |= CON_CONSDEV;

preferred_console = selected_console;

}

break;

}

if (!(console->flags & CON_ENABLED))

return;

if (bootconsole) {

printk(KERN_INFO "console handover: boot [%s%d] -> real [%s%d]/n",

bootconsole->name, bootconsole->index,

console->name, console->index);

unregister_console(bootconsole);

console->flags &= ~CON_PRINTBUFFER;

}

/*

* Put this console in the list - keep the

* preferred driver at the head of the list.

*/

acquire_console_sem();

if ((console->flags & CON_CONSDEV) || console_drivers == NULL) {

console->next = console_drivers;

console_drivers = console;

if (console->next)

console->next->flags &= ~CON_CONSDEV;

} else {

console->next = console_drivers->next;

console_drivers->next = console;

}

if (console->flags & CON_PRINTBUFFER) {

/*

* release_console_sem() will print out the buffered messages

* for us.

*/

spin_lock_irqsave(&logbuf_lock, flags);

con_start = log_start;

spin_unlock_irqrestore(&logbuf_lock, flags);

}

release_console_sem();

}

当运行到这里时,参数console将指向全局变量bfin_early_serial_console。而console_drivers这一全局变量则为空。

当此函数执行完成后,将输出printk缓冲区中的内容:

Linux version 2.6.22.19-ADI-2008R1.5-svn ([email protected]) (gcc versio

n 4.1.2 (ADI svn)) #4 SMP Sat Jan 10 22:24:10 CST 2009

early printk enabled on early_BFuart0

1.2.4.1 串口硬件初始化
在register_console函数中要进行串口硬件的初始化工作,这个工作是由console结构体中的setup回调函数来完成的:

int (*setup)(struct console *, char *);

在register_console函数中有这样一段代码:

/*

* See if we want to use this console driver. If we

* didn't select a console we take the first one

* that registers here.

*/

if (preferred_console < 0) {

if (console->index < 0)

console->index = 0;

if (console->setup == NULL ||

console->setup(console, NULL) == 0) {

console->flags |= CON_ENABLED | CON_CONSDEV;

preferred_console = 0;

}

}

在此调用了setup回调函数。

在bf561的内核中,此回调函数指向bfin_serial_console_setup,它位于drivers/serial/bfin-5xx.c:

static int __init

bfin_serial_console_setup(struct console *co, char *options)

{

struct bfin_serial_port *uart;

int baud = 57600;

int bits = 8;

int parity = 'n';

int flow = 'n';

/*

* Check whether an invalid uart number has been specified, and

* if so, search for the first available port that does have

* console support.

*/

if (co->index == -1 || co->index >= nr_ports)

co->index = 0;

uart = &bfin_serial_ports[co->index];

if (options)

uart_parse_options(options, &baud, &parity, &bits, &flow);

else

bfin_serial_console_get_options(uart, &baud, &parity, &bits);

return uart_set_options(&uart->port, co, baud, parity, bits, flow);

}

在这里,由于在register_console中传递过来的option为NULL,因此将直接调用bfin_serial_console_get_options,而这个函数用于直接从硬件寄存器中读取当前的串口配置,但是它仅适用于boot-loader已经对串口初始化的情况,对于没用boot-loader的情况,它将什么也不做。

因此,对于不用boot-loader的情况,early console的波特率将只能使用57600这一固定值。如果要使earlyprintk中的波特率这一参数生效,必须修改此处的逻辑。

1.3 通过console输出信息
在内核中,向console输出信息是通过release_console_sem函数来完成的:
/**
* release_console_sem - unlock the console system
*
* Releases the semaphore which the caller holds on the console system
* and the console driver list.
*
* While the semaphore was held, console output may have been buffered
* by printk(). If this is the case, release_console_sem() emits
* the output prior to releasing the semaphore.
*
* If there is output waiting for klogd, we wake it up.
*
* release_console_sem() may be called from any context.
*/
void release_console_sem(void)
{
unsigned long flags;
unsigned long _con_start, _log_end;
unsigned long wake_klogd = 0;

if (console_suspended) {
up(&secondary_console_sem);
return;
}

console_may_schedule = 0;

for ( ; ; ) {
spin_lock_irqsave(&logbuf_lock, flags);
wake_klogd |= log_start - log_end;
if (con_start == log_end)
break; /* Nothing to print */
_con_start = con_start;
_log_end = log_end;
con_start = log_end; /* Flush */
spin_unlock(&logbuf_lock);
call_console_drivers(_con_start, _log_end);
local_irq_restore(flags);
}
console_locked = 0;
up(&console_sem);
spin_unlock_irqrestore(&logbuf_lock, flags);
if (wake_klogd)
wake_up_klogd();
}
在这里,实际输出通过call_console_drivers函数完成:
/*
* Call the console drivers, asking them to write out
* log_buf[start] to log_buf[end - 1].
* The console_sem must be held.
*/
static void call_console_drivers(unsigned long start, unsigned long end)
{
unsigned long cur_index, start_print;
static int msg_level = -1;

BUG_ON(((long)(start - end)) > 0);

cur_index = start;
start_print = start;
while (cur_index != end) {
if (msg_level < 0 && ((end - cur_index) > 2) &&
LOG_BUF(cur_index + 0) == '<' &&
LOG_BUF(cur_index + 1) >= '0' &&
LOG_BUF(cur_index + 1) <= '7' &&
LOG_BUF(cur_index + 2) == '>') {
msg_level = LOG_BUF(cur_index + 1) - '0';
cur_index += 3;
start_print = cur_index;
}
while (cur_index != end) {
char c = LOG_BUF(cur_index);

cur_index++;
if (c == '/n') {
if (msg_level < 0) {
/*
* printk() has already given us loglevel tags in
* the buffer. This code is here in case the
* log buffer has wrapped right round and scribbled
* on those tags
*/
msg_level = default_message_loglevel;
}
_call_console_drivers(start_print, cur_index, msg_level);
msg_level = -1;
start_print = cur_index;
break;
}
}
}
_call_console_drivers(start_print, end, msg_level);
}
继续跟踪_call_console_drivers:
/*
* Write out chars from start to end - 1 inclusive
*/
static void _call_console_drivers(unsigned long start,
unsigned long end, int msg_log_level)
{
if ((msg_log_level < console_loglevel || ignore_loglevel) &&
console_drivers && start != end) {
if ((start & LOG_BUF_MASK) > (end & LOG_BUF_MASK)) {
/* wrapped write */
__call_console_drivers(start & LOG_BUF_MASK,
log_buf_len);
__call_console_drivers(0, end & LOG_BUF_MASK);
} else {
__call_console_drivers(start, end);
}
}
}
继续跟踪__call_console_drivers:
/*
* Call the console drivers on a range of log_buf
*/
static void __call_console_drivers(unsigned long start, unsigned long end)
{
struct console *con;

for (con = console_drivers; con; con = con->next) {
if ((con->flags & CON_ENABLED) && con->write &&
(cpu_online(smp_processor_id()) ||
(con->flags & CON_ANYTIME)))
con->write(con, &LOG_BUF(start), end - start);
}
}
嘿嘿,原来是调用console结构体中的write函数!记得我们在内核中是使用了bfin_serial_console做为我们的console,而这个结构体中的write回调函数则初始化为bfin_serial_console_write,这个函数在drivers/serial/bfin_5xx.c:
/*
* Interrupts are disabled on entering
*/
static void
bfin_serial_console_write(struct console *co, const char *s, unsigned int count)
{
struct bfin_serial_port *uart = &bfin_serial_ports[co->index];
int flags = 0;

spin_lock_irqsave(&uart->port.lock, flags);
uart_console_write(&uart->port, s, count, bfin_serial_console_putchar);
spin_unlock_irqrestore(&uart->port.lock, flags);
}
再跟踪uart_console_write,此函数位于drivers/serial/serial_core.c。
/*
* uart_console_write - write a console message to a serial port
* @port: the port to write the message
* @s: array of characters
* @count: number of characters in string to write
* @write: function to write character to port
*/
void uart_console_write(struct uart_port *port, const char *s,
unsigned int count,
void (*putchar)(struct uart_port *, int))
{
unsigned int i;

for (i = 0; i < count; i++, s++) {
if (*s == '/n')
putchar(port, '/r');
putchar(port, *s);
}
}
因为uart是一个通用的抽象接口,它需要指定与具体硬件相关的函数来进行输出,在我们的调用中使用了bfin_serial_console_putchar做为回调函数,因此实际输出是通过bfin_serial_console_putchar来完成的,此函数在drivers/serial/bfin_5xx.c:
static void bfin_serial_console_putchar(struct uart_port *port, int ch)
{
struct bfin_serial_port *uart = (struct bfin_serial_port *)port;
while (!(UART_GET_LSR(uart) & THRE))
barrier();
UART_PUT_CHAR(uart, ch);
SSYNC();
}

细看printk.c文件,可以发现几个与printk函数相关的参数:

1.1 log_buf_len

__setup("log_buf_len=", log_buf_len_setup);

即这个内核参数由log_buf_len_setup函数进行处理:

static char __log_buf[__LOG_BUF_LEN];

static char *log_buf = __log_buf;

static int log_buf_len = __LOG_BUF_LEN;

static unsigned long logged_chars; /* Number of chars produced since last read+clear operation */

static int __init log_buf_len_setup(char *str)

{

unsigned long size = memparse(str, &str);

unsigned long flags;

if (size)

size = roundup_pow_of_two(size);

if (size > log_buf_len) {

unsigned long start, dest_idx, offset;

char *new_log_buf;

new_log_buf = alloc_bootmem(size);

if (!new_log_buf) {

printk(KERN_WARNING "log_buf_len: allocation failed/n");

goto out;

}

spin_lock_irqsave(&logbuf_lock, flags);

log_buf_len = size;

log_buf = new_log_buf;

offset = start = min(con_start, log_start);

dest_idx = 0;

while (start != log_end) {

log_buf[dest_idx] = __log_buf[start & (__LOG_BUF_LEN - 1)];

start++;

dest_idx++;

}

log_start -= offset;

con_start -= offset;

log_end -= offset;

spin_unlock_irqrestore(&logbuf_lock, flags);

printk(KERN_NOTICE "log_buf_len: %d/n", log_buf_len);

}

out:

return 1;

}

在默认情况下,printk缓冲区的大小由__LOG_BUF_LEN指定

#define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT)

#define CONFIG_LOG_BUF_SHIFT 14

214次方。输入的值必须比这个值大才有效果。而且由于使用了memparse进行数值的分析,因此它可以K, M, G这三个值。如:

log_buf_len=64k

1.2 ignore_loglevel

static int __read_mostly ignore_loglevel;

static int __init ignore_loglevel_setup(char *str)

{

ignore_loglevel = 1;

printk(KERN_INFO "debug: ignoring loglevel setting./n");

return 1;

}

__setup("ignore_loglevel", ignore_loglevel_setup);

这个内核参数不需要设置值。这个参数仅用在_call_console_drivers函数中

static void _call_console_drivers(unsigned long start,

unsigned long end, int msg_log_level)

{

if ((msg_log_level < console_loglevel || ignore_loglevel) &&

console_drivers && start != end) {

if ((start & LOG_BUF_MASK) > (end & LOG_BUF_MASK)) {

/* wrapped write */

__call_console_drivers(start & LOG_BUF_MASK,

log_buf_len);

__call_console_drivers(0, end & LOG_BUF_MASK);

} else {

__call_console_drivers(start, end);

}

}

}

在使用了这个内核参数后,printk将忽略输出的级别,直接将传递进来的所有信息输出。

1.3 KERN_*

在使用printk输出的时候,可以使用KERN_*宏来指定输出级别。

#define KERN_EMERG "<0>" /* system is unusable */

#define KERN_ALERT "<1>" /* action must be taken immediately */

#define KERN_CRIT "<2>" /* critical conditions */

#define KERN_ERR "<3>" /* error conditions */

#define KERN_WARNING "<4>" /* warning conditions */

#define KERN_NOTICE "<5>" /* normal but significant condition */

#define KERN_INFO "<6>" /* informational */

#define KERN_DEBUG "<7>" /* debug-level messages */

_call_console_drivers函数中可以看到,当指定的输出级别大于等于console_loglevel时,信息将不会输出。console_loglevel的定义为:

#define console_loglevel (console_printk[0])

当使用printk而不指定输出级别时,printk取默认级别default_message_loglevel,其定义为:

#define default_message_loglevel (console_printk[1])

这里涉及的console_printk是一个全局变量:

int console_printk[4] = {

DEFAULT_CONSOLE_LOGLEVEL, /* console_loglevel */

DEFAULT_MESSAGE_LOGLEVEL, /* default_message_loglevel */

MINIMUM_CONSOLE_LOGLEVEL, /* minimum_console_loglevel */

DEFAULT_CONSOLE_LOGLEVEL, /* default_console_loglevel */

};

#define DEFAULT_CONSOLE_LOGLEVEL 7 /* anything MORE serious than KERN_DEBUG */

#define DEFAULT_MESSAGE_LOGLEVEL 4 /* KERN_WARNING */

因此,只要不是在输出时指定KERN_DEBUG,其信息都将被printk输出。

1.4 printk_time

这个参数定义为:

#if defined(CONFIG_PRINTK_TIME)

static int printk_time = 1;

#else

static int printk_time = 0;

#endif

module_param(printk_time, int, S_IRUGO | S_IWUSR);

static int __init printk_time_setup(char *str)

{

if (*str)

return 0;

printk_time = 1;

return 1;

}

__setup("time", printk_time_setup);

在指定这个参数之后,printk将在每条信息之前加上时间。

asmlinkage int vprintk(const char *fmt, va_list args)

{

…………………………….

for (p = printk_buf; *p; p++) {

if (log_level_unknown) {

/* log_level_unknown signals the start of a new line */

if (printk_time) {

int loglev_char;

char tbuf[50], *tp;

unsigned tlen;

unsigned long long t;

unsigned long nanosec_rem;

/*

* force the log level token to be

* before the time output.

*/

if (p[0] == '<' && p[1] >='0' &&

p[1] <= '7' && p[2] == '>') {

loglev_char = p[1];

p += 3;

printed_len -= 3;

} else {

loglev_char = default_message_loglevel

+ '0';

}

t = printk_clock();

nanosec_rem = do_div(t, 1000000000);

tlen = sprintf(tbuf,

"<%c>[%5lu.%06lu] ",

loglev_char,

(unsigned long)t,

nanosec_rem/1000);

for (tp = tbuf; tp < tbuf + tlen; tp++)

emit_log_char(*tp);

printed_len += tlen;

} else {

if (p[0] != '<' || p[1] < '0' ||

p[1] > '7' || p[2] != '>') {

emit_log_char('<');

emit_log_char(default_message_loglevel

+ '0');

emit_log_char('>');

printed_len += 3;

}

}

log_level_unknown = 0;

if (!*p)

break;

}

emit_log_char(*p);

if (*p == '/n')

log_level_unknown = 1;

}

你可能感兴趣的:(console)