Hadoop之MultipleOutputs

背景:

根据业务输出有规则的业务数据,比如都在/abc/a/下他们根据业务不同,其文件名称也不同

/abc/a/good-001

/abc/a/bad-001

那么下个job可以基于文件名做相应的业务操作

hadoop版本信息:

[ ~]$ hadoop version
Hadoop 0.20.2-cdh3u4
Subversion git://ubuntu-slave01/var/lib/jenkins/workspace/CDH3u4-Full-RC/build/cdh3/hadoop20/0.20.2-cdh3u4/source -r 214dd731e3bdb687cb55988d3f47dd9e248c5690
Compiled by jenkins on Mon May  7 13:01:39 PDT 2012
From source with checksum a60c9795e41a3248b212344fb131c12c

实现方式:

1.基于MultipleOutputs

 

实现代码:

mapper:访问hbase某个表然后利用MultipleOutputs写

import java.io.IOException;
import java.util.Arrays;
import java.util.HashMap;
import java.util.HashSet;
import java.util.Iterator;
import java.util.List;
import java.util.Map;
import java.util.Set;
import org.apache.commons.lang.StringUtils;
import org.apache.commons.lang.math.RandomUtils;
import org.apache.commons.logging.Log;
import org.apache.commons.logging.LogFactory;
import org.apache.hadoop.hbase.KeyValue;
import org.apache.hadoop.hbase.client.Result;
import org.apache.hadoop.hbase.io.ImmutableBytesWritable;
import org.apache.hadoop.hbase.mapreduce.TableMapper;
import org.apache.hadoop.hbase.mapreduce.TableSplit;
import org.apache.hadoop.hbase.util.Bytes;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.lib.output.MultipleOutputs;
import com.alibaba.fastjson.JSONObject;
public class CommentMapper extends TableMapper<NullWritable, Text> {

	private static final Log LOGGER = LogFactory.getLog(CommentMapper.class);
	private static Set<String> set = new HashSet<String>();
	private org.apache.hadoop.mapreduce.lib.output.MultipleOutputs<NullWritable, Text> mos;

	@Override
	public void setup(Context context) {
		mos = new MultipleOutputs<NullWritable, Text>(context);
	}

	@Override
	protected void cleanup(Context context) throws IOException, InterruptedException {
		mos.close();
		super.cleanup(context);
	}

	@Override
	protected final void map(ImmutableBytesWritable key, Result value, Context context)
	        throws IOException, InterruptedException {
		try {
			 
			List<KeyValue> list = value.list();
			Iterator<KeyValue> iterator = list.iterator();
			Map<String, Object> map = new HashMap<String, Object>();
			while (iterator.hasNext()) {

				KeyValue keyValue = iterator.next();
				byte[] bytes = value.getValue(keyValue.getFamily(), keyValue.getQualifier());
				String keyId = StringUtils.lowerCase(Bytes.toString(keyValue.getFamily()))
				        + StringUtils.capitalize(StringUtils.lowerCase(Bytes.toString(keyValue
				                .getQualifier())));
				if (set.contains(keyId)) {
					continue;
				}
				if ("eS".equals(keyId)) {
					map.put(keyId, Float.toString(Bytes.toFloat(bytes)));
				} else {
					map.put(keyId, Bytes.toString(bytes));
				}
			}

			JSONObject json = new JSONObject(map);

			mos.write(RandomUtils.nextBoolean() + "", NullWritable.get(),
			        new Text(json.toJSONString()));
			LOGGER.info("working dir:" + context.getWorkingDirectory().getName());
			LOGGER.info("getInputSplit:" + Arrays.toString(context.getInputSplit().getLocations()));
		} catch (Throwable e) {
			LOGGER.error("Error occurs when running CommentMapper", e);
			throw new RunTimeException("Error occurs when running CommentMapper", e);
		}
	}

}

Job执行:

private static void runJob() {

	String inputTableName = "RECMD_JD_COMMENT";
	Configuration conf = HBaseConfiguration.create();
	conf.set("hbase.master", XXX);
	conf.set("hbase.zookeeper.quorum", XXX);
	conf.set("hbase.cluster.distributed", "true");
	conf.set("mapreduce.job.counters.limit", "100000");
	conf.set("mapreduce.job.counters.max", "100000");
	String outPathStr = "/user/search/test/CommentText";
	conf.setBoolean(DFSConfigKeys.DFS_CLIENT_READ_SHORTCIRCUIT_KEY, true);
	conf.set("mapreduce.output.basename", "val");
	try {
		HadoopUtil.delete(conf, new Path(outPathStr));
		Scan scan = new Scan();
		scan.setCacheBlocks(false);
		scan.setCaching(200);
		Job job = new Job(conf, "CommentDDTask");

		job.setJarByClass(DDTask.class);
		TableMapReduceUtil.initTableMapperJob(inputTableName, scan, CommentMapper.class,
			NullWritable.class, Text.class, job);

		TextOutputFormat.setOutputPath(job, new Path(outPathStr));
		MultipleOutputs.addNamedOutput(job, "true", TextOutputFormat.class, NullWritable.class,
			Text.class);
		MultipleOutputs.addNamedOutput(job, "false", TextOutputFormat.class,
			NullWritable.class, Text.class);
		job.setNumReduceTasks(0);
		job.waitForCompletion(true);

	} catch (Throwable e) {
		throw new RuntimeException("Run DDTask error! ", e);
	} finally {
		HConnectionManager.deleteConnection(conf, true);
	}

}

 

小技巧:

可以通过mapreduce.output.basename来控制写文件生成的名称

 

你可能感兴趣的:(hadoop)