【MATLAB例程】线性卡尔曼滤波的程序,三维状态量和观测量,较为简单,可用于理解多维KF,附代码下载链接
本文所述代码实现了一个三维状态的扩展卡尔曼滤波(ExtendedKalmanFilter,EKF)算法。通过生成过程噪声和观测噪声,对真实状态进行滤波估计,同时对比了滤波前后状态量的误差和误差累积分布曲线。文章目录简介运行结果MATLAB源代码简介代码分为以下几个部分:初始化部分清理工作区环境,设置随机数种子,定义时间序列。定义过程噪声协方差矩阵Q和观测噪声协方差矩阵R。初始化真实状态矩阵X、观测