E-COM-NET
首页
在线工具
Layui镜像站
SUI文档
联系我们
推荐频道
Java
PHP
C++
C
C#
Python
Ruby
go语言
Scala
Servlet
Vue
MySQL
NoSQL
Redis
CSS
Oracle
SQL Server
DB2
HBase
Http
HTML5
Spring
Ajax
Jquery
JavaScript
Json
XML
NodeJs
mybatis
Hibernate
算法
设计模式
shell
数据结构
大数据
JS
消息中间件
正则表达式
Tomcat
SQL
Nginx
Shiro
Maven
Linux
opencv机器学习线性回归
AI创业必备:GPU云、GPU 租赁或自建,你选对了吗?
在快速发展的
机器学习
领域,人工智能初创公司对GPU的需求与日俱增。GPU成了AI创业公司们构建核心资源,甚至颠覆创新的关键资源和基础设施。然而,这也让GPU资源的价格水涨船高。
DO_Community
·
2024-09-05 17:25
商业建议
技术科普
人工智能
gpu算力
ai
语言模型
服务器
2024国赛数学建模备战-数学建模思想方法大全及方法适用范围
2、分类分为两类:多元
线性回归
和非线性
线性回归
;其中非
线性回归
可以通过一定的变化转化为
线性回归
,比如:y=lnx可以转化为y=uu=lnx来解决;
V建模忠哥V
·
2024-09-05 17:54
2024国赛
数学建模
从0开始深度学习(4)——
线性回归
概念
1
线性回归
回归(regression)指能为一个或多个自变量与因变量之间的关系进行建模。
青石横刀策马
·
2024-09-05 15:47
从头学机器学习
深度学习
神经网络
人工智能
【Python
机器学习
】
机器学习
任务中常见的数据异质问题和模型异构问题是什么?解决策略是什么?
文章目录数据异质模型异构数据异质数据异质问题(Heterogeneityindata)通常指数据集内部的不一致性,这些不一致性可能来自多种源。在实际应用中,数据异质性可以表现为多种形式,包括:不同来源的数据:数据可能来自不同的数据源,每个源可能采用不同的数据收集方法和标准。例如,社交媒体数据和传统调查数据就可能有很大的差异。不同类型的数据:数据可以是结构化的(例如,数据库中的表格数据),半结构化的
惊鸿若梦一书生
·
2024-09-05 15:46
Python机器学习
python
深度学习
开发语言
【论文阅读】AugSteal: Advancing Model Steal With Data Augmentation in Active Learning Frameworks(2024)
摘要Withtheproliferationof(随着)machinelearningmodels(
机器学习
模型)indiverseapplications,theissueofmodelsecurity
Bosenya12
·
2024-09-05 14:40
科研学习
模型窃取
论文阅读
模型窃取
模型提取
数据增强
主动学习
opencv
学习:形态学操作和边缘检测算子
cv2.morphologyEx()是
OpenCV
库中的一个函数,用于执行更复杂的形态学操作。这个函数可以执行开运算、闭运算、梯度运算、膨胀、腐蚀以及顶帽和黑帽转换等。
夜清寒风
·
2024-09-05 13:34
opencv
学习
人工智能
算法
计算机视觉
深度学习--
机器学习
相关(2)
Momentum在学习
机器学习
时是很可能遇到的,是动量的意思。动量不是速度和学习率,应该说是类似于加速度。AdaGrad(适应性梯度算法)适应性梯度算法的特点在于:独立地调整每一个参数的学习率。在S
在下小天n
·
2024-09-05 13:33
深度学习
深度学习
机器学习
人工智能
深度学习的发展历程
深度学习的起源在
机器学习
中,我们经常使用两种方式来表示特征:局部表示(LocalRepresentation)和分布式表示(DistributedRepresentation)。
木亦汐丫
·
2024-09-05 13:00
技术摘抄
深度学习
人工智能
感知机
反向传播
梯度下降
神经网络
线性回归
(1)——起源
几乎所有的科学观察都着了魔似的向平均值回归——《女士品茶》什么是
线性回归
线性回归
这个概念是由达尔文的表弟高尔顿在研究父代与子代身高关系的时候提出的,我第一次看到这四个字的时候,心中暗骂,这起的什么破名,
Magina507
·
2024-09-05 12:41
【AIGC】Whisper语音识别模型概述,应用场景和具体实例及如何本地搭建Whisper语音识别模型?
《博客》:人工智能,深度学习,
机器学习
,python,自然语言处理,AIGC等分享。
@我们的天空
·
2024-09-05 12:27
AIGC
whisper
语音识别
AIGC
python
人工智能
机器学习
深度学习
(18-1)基于深度强化学习的股票交易模型:项目介绍+准备环境
希望通过本章内容的学习,能够为那些对金融与
机器学习
交叉领域感兴趣的人士提供有益的参考。1.1项目介绍在金融市场中,股票交易是一项充满挑战的任务,需要在高度波动和复杂的市场环境中做出快速且精准的决策。
码农三叔
·
2024-09-05 11:52
强化学习从入门到实践
人工智能
深度学习
股票交易
模型
DRL
Double
DQN
Dueling
DQN
Windows系统下的Spark环境配置
一:Spark的介绍ApacheSpark是一个开源的分布式大数据处理引擎,它提供了一整套开发API,包括流计算和
机器学习
。
eeee~~
·
2024-09-05 11:19
3:大数据技术
实用教程
spark
大数据
分布式
用AI改变对话:ChatGPT的全面研究
进化与影响实际上,ChatGPT的发展可以说是源于NLP(自然语言处理)和ML(
机器学习
)领域的整体进步。ChatG
AI立志传
·
2024-09-05 10:09
chatgpt
人工智能
看demo学算法之 k-means
今天我们要继续深入探讨k-means算法,这是一种在数据科学和
机器学习
中非常流行的聚类方法。✨k-means的四大步骤随机启动:先随便挑k个数据点当老大(簇中心)。
小琳ai
·
2024-09-05 10:06
算法
kmeans
机器学习
理解Softmax函数的原理和实现
Softmax函数是
机器学习
和深度学习中非常基础且重要的一个概念,特别是在处理分类问题时。它的作用是将一个向量中的元素值转换成概率分布,使得每个元素的值都在0到1之间,并且所有元素值的总和为1。
Ven%
·
2024-09-05 09:06
深度学习基础动手
自然语言处理
人工智能
深度学习
机器学习
python
openCV
【实践系列】2——
OpenCV
方向梯度直方图
什么是特征描述符特征描述符是图像或图像块的表示,其通过提取有用信息和丢弃无关信息来简化图像。通常,特征描述符将一个width*height*3(通道)的图像转换为长度为n的特征向量或数组。在HOG特征描述符的情况下,输入图像的大小为64×128×3,输出特征向量的长度为3780。在HOG特征描述符中,梯度方向(定向梯度)的分布(直方图)被用作特征。图像的梯度(x和y导数)是有用的,因为在边缘和角落
一只长尾巴
·
2024-09-05 09:31
人工智能与
机器学习
原理精解【17】
文章目录贝叶斯贝叶斯定理的公式推导一、条件概率的定义二、联合概率的分解三、贝叶斯定理的推导四、全概率公式的应用五、总结全概率公式推导一、全概率公式的定义二、全概率公式的推导三、全概率公式的应用贝叶斯定理的原理一、基本原理二、核心概念三、数学表达式四、原理应用五、原理特点朴素贝叶斯定理一、贝叶斯定理基础二、朴素贝叶斯的原理三、朴素贝叶斯的特点朴素贝叶斯公式一、贝叶斯定理二、特征独立性假设三、朴素贝叶
叶绿先锋
·
2024-09-05 08:23
基础数学与应用数学
人工智能
机器学习
概率论
机器学习
面试题目分享面试经验分享
机器学习
算法工程师深度学习 经典问题
标题
机器学习
面经总结的常见面试题目等作业帮实习视觉算法一面凉凉经3.16号投递图像算法实习生,昨天hr打电话约了今早上牛客面试面试官还是很和蔼的,问了很多基础和细节,平时我都没有注意到的,肯定凉了,在这里记录一下
好家伙VCC
·
2024-09-05 08:53
面试
机器学习
面试
经验分享
stm32
嵌入式硬件
单片机
fpga开发
深度学习100问51:什么是mini-batch
在
机器学习
的奇妙世界里,有个超厉害的家伙叫mini-batch,它就像是一个小魔法包。想象一下,你有一个超级大的宝箱,里面装满了各种宝贝数据。
不断持续学习ing
·
2024-09-05 07:47
自然语言处理
机器学习
人工智能
偏见的亮点:认知偏见如何增强推荐系统
然而,在
机器学习
中,尤其是在搜索和排序系统中,认知偏见的研究仍需改进。尽管有大量研究集中在探讨这些偏见如何影响模型训练和机器行为的道德性,但信息检索领域大多关注于检测偏见及其对搜索行为的影响。
量子位AI
·
2024-09-05 05:06
人工智能
机器学习
MTCNN训练
matlab部署代码,其训练和优化却没有放出来,引发了很多好事者复现如果只是要部署的话可以使用MTCNN,其提供了部署全平台实现,包括C++、python、ncnn和tensorflow,还有加速版本和
opencv
迷若烟雨
·
2024-09-05 01:10
人脸识别
tensorflow
深度学习
caffe
(二)十分简易快速 自己训练样本
opencv
级联lbp分类器 车牌识别
强烈建议先阅读上一篇博文,此篇博文是上一篇的拓展目录1、haar与lbp分类器的对比2、使用工具对LBP特征类型进行训练3、LBP分类器现象展示4、完整代码贴出5、更新后的工程贴出6、结语1、haar与lbp分类器的对比Haar特征分类器的优缺点:优点:准确性:在训练数据充足且质量高的情况下,Haar分类器可以达到很高的检测准确率。成熟稳定:Haar特征分类器是较早使用的特征检测方法之一,经过多年
Sisphusssss
·
2024-09-05 00:37
opencv
人工智能
计算机视觉
笔记
python
学习
机器学习
实战----波士顿房价预测模型
波士顿房价模型预测是一个回归问题,可以采用r2_score方法来作为评价指标。importnumpyasnpimportpandasaspdfromsklearn.metricsimportr2_score#从sklearn的数据库中导入波士顿房产数据fromsklearn.datasetsimportload_bostonfromsklearn.model_selectionimporttrai
永远偷渡不了的非洲人
·
2024-09-04 22:24
机器学习
机器学习
sklearn
python
【
机器学习
】任务二:波士顿房价的数据与鸢尾花数据分析及可视化
目录1.实验知识准备1.1NumPy1.2Matplotlib库1.3scikit-learn库:1.4TensorFlow1.5Keras2.波士顿房价的数据分析及可视化2.1波士顿房价的数据分析2.1.1步骤一:导入所需的模块和包2.1.2步骤二:从Keras库中加载波士顿房价数据集2.1.3步骤三:加载本地CSV数据集2.1.4步骤四:划分特征和目标变量2.1.5步骤五:划分训练集和测试集2
FHYAAAX
·
2024-09-04 21:16
机器学习
机器学习
数据分析
人工智能
C#调用
OpenCv
Sharp实现图像的直方图均衡化
本文学习基于
OpenCv
Sharp的直方图均衡化处理方式,并使用SkiaSharp绘制相关图形。
gc_2299
·
2024-09-04 20:10
dotnet编程
OpenCvSharp
直方图均衡化
Datawhale X 李宏毅苹果书 AI夏令营 入门 Task3-
机器学习
框架
2.优化问题在
机器学习
模型训练过程中,即使模型的灵活性足够高,也可能由于优化算法的问题导致训练数据的损失不够低。为了
沙雕是沙雕是沙雕
·
2024-09-04 19:08
人工智能
机器学习
机器学习
算法 —— LightGBM
欢迎来到我的博客——探索技术的无限可能!博客的简介(文章目录)目录背景描述数据说明数据来源LightGBMLightGBM原理简介LightGBM的优点LightGBM的缺点LightGBM的应用基于英雄联盟数据集的LightGBM分类实战函数库导入数据读取/载入数据信息简单查看可视化描述利用LightGBM进行训练与预测利用LightGBM进行特征选择通过调整参数获得更好的效果基本参数调整针对训
ZShiJ
·
2024-09-04 18:30
机器学习算法
机器学习
算法
分类
机器学习
赋能的智能光子学器件系统研究与应用
从理论模型的整合到光学现象的复杂模拟,从数据驱动的探索到光场的智能分析,
机器学习
正以前所未有的动力推动光子学领域的革新。
哦哦~921
·
2024-09-04 17:58
机器学习
人工智能
深度学习
数据库
数据分析
机器人路径规划的
机器学习
算法
机器学习
算法正在重塑机器人在复杂和动态环境中导航的方式,而机器人路径规划就是其中一个重要领域。传统方法通常在受控环境中表现良好,但在处理实时出现的障碍或变化时往往失效。
科技大本营
·
2024-09-04 17:25
机器人
机器学习
算法
商业分析能力是怎样炼成的?
对商业智能BI、大数据分析挖掘、
机器学习
,python,R等数据领域感兴趣的同学加微信:tstoutiao,邀请你进入数据爱好者交流群,数据爱好者们都在这儿。
R3eE9y2OeFcU40
·
2024-09-04 15:13
深度学习入门:使用 PyTorch 构建和训练你的第一个神经网络
引言深度学习是
机器学习
的一个分支,它利用多层非线性处理单元(即神经网络)来解决复杂的模式识别问题。PyTorch是一个强大的深度学习框架,它提供了灵活的API和动态计算图,非常适合初学者和研究者使用。
Mr' 郑
·
2024-09-04 13:29
深度学习
pytorch
神经网络
Python:解锁高效编程与数据分析的钥匙
Python:解锁高效编程与数据分析的钥匙在当今快速发展的信息技术时代,Python作为一种高级编程语言,凭借其简洁的语法、强大的库支持和广泛的应用场景,在数据科学、
机器学习
、Web开发等多个领域大放异彩
我的运维人生
·
2024-09-04 13:28
python
数据分析
开发语言
运维开发
技术共享
OpenCV
图像处理技术之图像金字塔
FuXianjun.AllRightsReserved.所有素材来自于小傅老师。开始今天的学习吧!学习的是图像金字塔。我们的学习目标:能够理解高斯金字塔与拉普拉斯金字塔的处理过程能够使用相关函数进行高斯金字塔可逆性分析能够使用相关函数进行拉普拉斯金字塔无损恢复图像能够掌握ROI的应用处理能够掌握泛洪填充算法并使用相关函数进行处理冲冲冲!任务一:高斯金字塔高斯金字塔由cv2.pyrDown()与cv
WYOLO
·
2024-09-04 12:54
opencv
基于 LDA SS-NMF 的文本主题分析可视化分析系统 毕业设计 附完整代码
摘要在
机器学习
和自然语言处理领域中,主题模型(TopicModel)是在一系列文档中发现抽象主题的一种统计模型,并被广泛地应用于文本文档集合的分析。
程序员奇奇
·
2024-09-04 11:44
计算机毕设
课程设计
python
人工智能
LDA
主题分析
GNN会议&期刊汇总(人工智能、
机器学习
、深度学习、数据挖掘)
会议【NeurIPS】全称ConferenceonNeuralInformationProcessingSystems(神经信息处理系统大会),
机器学习
和计算神经科学领域的顶级学术会议,CCFA。
Bunny_Ben
·
2024-09-04 11:11
科研方法&心得
人工智能
机器学习
深度学习
笔记
神经网络
数据挖掘
机器学习
系列12:反向传播算法
当我们要运用高级算法进行梯度下降时,需要计算两个值,代价函数和代价函数的偏导数:代价函数我们之前已经知道怎么求了,现在只需要求代价函数的偏导数即可。采用如下方法,先进行前向传播算法,然后再进行反向传播算法(BackpropagationAlgorithm),反向传播算法与前向传播算法方向相反,它用来求代价函数的偏导数。具体过程看下图:用δ作为误差,计算方法为:有时我们在运用反向传播算法时会遇到bu
SuperFengCode
·
2024-09-04 10:40
机器学习系列
机器学习
神经网络
反向传播算法
梯度检验
机器学习笔记
李宏毅
机器学习
笔记——反向传播算法
反向传播算法反向传播(Backpropagation)是一种用于训练人工神经网络的算法,它通过计算损失函数相对于网络中每个参数的梯度来更新这些参数,从而最小化损失函数。反向传播是深度学习中最重要的算法之一,通常与梯度下降等优化算法结合使用。反向传播的基本原理反向传播的核心思想是利用链式法则(ChainRule)来高效地计算损失函数相对于每个参数的梯度。以下是反向传播的基本步骤:前向传播(Forwa
小陈phd
·
2024-09-04 10:07
机器学习
机器学习
算法
神经网络
【
机器学习
-神经网络】循环神经网络
在
机器学习
和深度学习的领域中,循环神经网络(RNN)作为一种处理序列数据的强大工具,已经在诸多应用场景中展现出了巨大的潜力。
刷刷刷粉刷匠
·
2024-09-04 10:36
机器学习
神经网络
rnn
pytorch pyro更高阶的优化器会使用更高阶的导数,比如二阶导数(Hessian矩阵)
在
机器学习
和深度学习中,优化器是用来更新模型参数以最小化损失函数的算法。通常,优化器会计算损失函数相对于参数的一阶导数(梯度),然后根据这些梯度来更新参数。
zhangfeng1133
·
2024-09-04 08:57
pytorch
矩阵
人工智能
Python知识点:如何使用Python进行时间序列预测
时间序列预测的方法有很多,包括统计方法(如ARIMA模型)、
机器学习
方法(如支持向量机、决策树)、以及深度学习方法(如LSTM网络)。
杰哥在此
·
2024-09-04 08:52
Python系列
python
开发语言
编程
面试
平均精度(Average Precision,AP)以及AP50、AP75、APs、APm、APl、Box AP、Mask AP等不同阈值和细分类别的评估指标说明
平均精度(AveragePrecision,AP)是信息检索领域和
机器学习
评价指标中常用的一个衡量方法,特别广泛用于目标检测任务。
fydw_715
·
2024-09-04 06:11
深度学习基础
分类
数据挖掘
人工智能
【深度学习 transformer】使用pytorch 训练transformer 模型,hugginface 来啦
HuggingFace是一个致力于开源自然语言处理(NLP)和
机器学习
项目的社区。
东华果汁哥
·
2024-09-04 06:39
深度学习-文本分类
深度学习
transformer
pytorch
NLP中的词向量及其应用
领域适应是一种技术,它允许
机器学习
和转移学习模型来映射小生境数据集,这些数据集都是用同一种语言编写的,但在语言上仍然不同。例如
喜欢打酱油的老鸟
·
2024-09-04 05:01
NLP
词向量
深度学习系列(1) TensorFlow---Tensorflow学习路线
学习TensorFlow是掌握深度学习和
机器学习
的关键一步。以下是一个详细的TensorFlow学习路线图,涵盖从基础到高级的知识点和实践,帮助你逐步掌握TensorFlow并应用于实际问题中。
CoderIsArt
·
2024-09-04 04:55
Python
机器学习与深度学习
深度学习
tensorflow
学习
人人都能懂的
机器学习
——用Keras搭建人工神经网络02
感知机1957年,FrankRosenblatt发明了感知机,它是最简单的人工神经网络之一。感知机是基于一个稍稍有些不同的人工神经元——阈值逻辑元(TLU)(见图1.4),有时也被称为线性阈值元(LTU)。这种神经元的输入和输出不再是二进制的布尔值,而是数字。每一个输入连接都与权重值相关联,TLU将各个输入加权取和然后将其带入一个阶跃函数,并输出结果:上述计算过程如下图1.4所示图1.4阈值逻辑单
苏小菁在编程
·
2024-09-04 03:28
K近邻(KNN)算法详解及Python实现
KNN依然是一种监督学习算法KNN(KNearestNeighbors,K近邻)算法是
机器学习
所有算法中理论最简单,最好理解的。KNN是一种基于实例的学习,通过计算新数据与训
天明豆豆
·
2024-09-04 03:23
【Python
机器学习
】卷积神经网络(CNN)的工具包
Python是神经网络工具包最丰富的语言之一。两个主要的神经网络架构分别是Theano和TensorFlow。这两者的底层计算深度依赖C语言,不过它们都提供了强大的PythonAPI。Torch在Python里面也有一个对应的API是PyTorch。这些框架都是高度抽象的工具集,适用于从头构建模型。Python社区开发了一些第三方库来简化这些底层架构的使用。其中Keras在API的友好性和功能性方
zhangbin_237
·
2024-09-04 01:38
Python机器学习
机器学习
python
cnn
神经网络
自然语言处理
开发语言
【Python
机器学习
】卷积神经网络(CNN)
卷积神经网络(CNN)得名于在数据样本上用滑动窗口(或卷积)的概念。卷积在数学中应用很广泛,通常与时间序列数据相关。它是用一个可视化盒子在一个区域内滑动,如下图所示:构建块卷积神经网络最早出现在图像处理和图像识别领域,它能够捕捉每个样本中数据点之间的空间关系,也就能识别出图像中是猫还是狗。卷积网络,也称为convnet,不像传统的前馈网络那样对每个元素(图中的像素)分配权重,而是定义了一组在图像上
zhangbin_237
·
2024-09-04 01:38
Python机器学习
机器学习
python
cnn
开发语言
自然语言处理
架构基础 -- Web框架之FastAPI
由SebastiánRamírez在2018年发布,FastAPI的设计目标是尽可能高效地开发API,特别适用于需要高性能的应用,如微服务架构、实时数据处理和
机器学习
应用。Fas
sz66cm
·
2024-09-04 00:35
架构
fastapi
定制静物商品背景及自定义抠图
为了完成这个任务,我们可以使用
OpenCV
进行简单的背景替换,对于复杂场景可以使用深度学习模型,比如removebg,用于提取前景。在这个
Enougme
·
2024-09-04 00:00
Python-图像处理
pillow
opencv
上一页
2
3
4
5
6
7
8
9
下一页
按字母分类:
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
其他