- VS2019+QT4.15+openCV4.5.1+CUDA加速
小小秀峰哥
python人工智能深度学习
文章目录前言一、软件安转以及注意事项二、CMake编译总结前言`最近公司有一个关于使用海康威视网络摄像头的目标检测的项目,发现使用openCV显示时,出现很大的延时,因此,只能使用cuda进行加速才能使显示达到实时,在进行编译时我发现很多问题,解决了好几天才完成编译一、软件安转以及注意事项1、Windows10系统2、VisualStudio2019与QT4.15(先安装)3、CUDA11.8、c
- CUDA编程(一):GPU计算与CUDA编程简介
AI Player
CUDA人工智能CUDANVIDIA
CUDA编程(一):GPU计算与CUDA编程简介GPU计算GPU硬件资源GPU软件资源GPU存储资源CUDA编程GPU计算NVIDIA公司发布的CUDA是建立在GPU上的一个通用并行计算平台和编程模型,CUDA编程可以利用GPU的并行计算引擎来更加高效地解决比较复杂的计算难题。GPU的并行计算最成功的一个应用就是深度学习领域。GPU通常不作为一个独立运行的计算平台,而需要与CPU协同工作,它可以看
- GPU编程与CUDA
Nice_cool.
Cuda与TensorRTc++
CUDA编程并行计算整体流程从主机端申请内存,把内存部分的内容拷贝到设备端在设备端的核函数计算从设备端拷贝到主机端,并且释放内存显存主机端:cpu设备端:gpu核函数:在gpu上运行的函数CUDA内存模型CUDA中的内存模型分为以下几个层次(硬件):•每个线程处理器(SP)都用自己的registers(寄存器)•每个SP都有自己的localmemory(局部内存),register和localme
- GPU-CUDA编程学习(一)
☞北海北☜
c++
Hello,CUDA最近在学习GUP编程,故此记录下学习进度。#include__global__voidmyfirstkernel(void){}intmain(void){myfirstkernel>>();printf("hello,CUDA!\n");return0;}不难看出CUDA代码基本上和ANSIC代码一样,只是增加了一些关键字来利用数据并行性global相当于声明函数在设备中运行
- 多版本cuda+多版本cudnn+gcc+cmake+opencv+darknet爬坑记录
LMM_AI
系统学习深度学习
本次针对darknet框架部署—centos7.x一、CUDA多版本安装1、很早前安装了很多cuda现在忘了步骤了,这里不再安装,下次再补上,可以看其他贴安装,记清楚自己的安装目录,一般默认在/usr/local/cuda(cuda10.0、cuda10.2),用哪个切换环境变量就行,很方便二、CUDNN版本安装1、下载cudnn并解压,官网上下载与CUDA相匹配的版本,下载难点需要注册个帐号,有
- RTX4060+ubuntu22.04+cuda11.8.0+cuDNN8.6.0 & 如何根据显卡型号和系统配置cuda和cuDNN所需的安装环境
computer_vision_chen
带你跑通人工智能项目cudacuDNN
文章目录电脑原配置安装cuda和cuDNN前的环境选择cuDNN与CUDAtookit和nvidiadriver的对应关系cuda版本选择⭐查看自己的nvidiadriver版本和最大支持的CUDA版本⭐最小支持版本查看11.8.0版本的cuda和ubuntu22.04对应的cuDNN版本查看ubuntu22.04中cuDNN支持的内核,GCC最终安装前的环境选择下载安装linux6.2.0内核安
- ubuntu22.04 + isaac gym环境配置流程
Yakusha
linuxbashc++
1.CUDA安装1.看系统架构:uname-m2.去官网下载适配你显卡驱动的最新cuda,可以通过nvidia-smi查看https://developer.nvidia.com/cuda-toolkit-archive3.然后执行,全选continue和yessudo./cuda_12.4.1_550.54.15_linux.run在bashrc中添加:exportPATH=/usr/local
- cuda 线程调度
weiwei0319
CUDA并发编程
硬件描述从硬件上看,一块显卡的最小单元是GPU核(或者叫做StreamProcessor),所有核心平均分配在多个SM中,而多个SM共同构成整块显卡的核心。比如RTX2070有36个StreamingMultiprocessors,而每个SM有64个CUDACores,RTX2070具有36*64=2304个CUDACores。软件描述thread,block,grid,warp都是CUDA编程上
- Window 下Mamba 环境安装踩坑问题汇总及解决方法 (无需绕过selective_scan_cuda)
yyywxk
#Python模块有关问题pythonWindowsMamba
导航安装教程导航Mamba及Vim安装问题参看本人博客:Mamba环境安装踩坑问题汇总及解决方法(初版)Linux下Mamba及Vim安装问题参看本人博客:Mamba环境安装踩坑问题汇总及解决方法(重置版)Windows下Mamba的安装参看本人博客:Window下Mamba环境安装踩坑问题汇总及解决方法(无需绕过selective_scan_cuda)Linux下Vim安装问题参看本人博客:Li
- vmamba 尝试安装记录
青雉007
condapython
1、安装虚拟环境condacreate-nvmambapython==3.102、激活环境condaactivatevmamba3、安装附加环境pipinstall-rrequirements.txt4、确保cuda为11.7以上5、安装selective_scan函数下载原版,vmamba中的selective_scan函数:原版链接https://github.com/MzeroMiko/VM
- Window Mamba 环境安装【CUDA】
红豆布丁
pythonmambassmcuda
WindowMamba环境安装1.安装PyTorch环境2.直接安装Mamba及其依赖3.手动编译Mamba及其依赖1.安装PyTorch环境condacreate-nmambapython=3.10condaactivatemambacondainstallcudatoolkit==11.8pipinstalltorch==2.1.1torchvision==0.16.1torchaudio==
- 【人工智能】Python常用库-PyTorch常用方法教程
IT古董
人工智能机器学习Python人工智能pythonpytorch机器学习
PyTorch是一个强大的开源深度学习框架,以其灵活性和动态计算图而广受欢迎。以下是PyTorch的详细教程,涵盖从基础到实际应用的使用方法。1.安装与导入1.1安装PyTorch访问PyTorch官方网站,根据系统、Python版本和CUDA支持选择安装命令。常用安装命令:pipinstalltorchtorchvisiontorchaudio1.2导入库importtorchimporttor
- Ubuntu22.04安装CUDA10.1
想夹逼但不收敛
ubuntuc++
Ubuntu22.04安装CUDA10.1前言gcc降级添加软件源更新软件源安装gcc-7更换gcc版本安装CUDA10.1前言ubuntu22.04支持cuda10.7以上的版本,而在一些情况下我们需要用到低级的cuda版本,本文以用ubuntu22.04安装cuda10.1为例。而在ubuntu中最主要的是gcc的变化,我们需要7.5+的gcc,而一般情况下ubuntu22.04只有gcc11
- docker镜像报错ERROR: failed to solve: DeadlineExceeded:
柠檬编程工作室
Dockerdockereureka容器
--------------------1|#基于NVIDIACUDA镜像,确保GPU支持2|>>>FROMnvidia/cuda:12.6.2-cudnn-devel-ubuntu20.043|4|#设置工作目录--------------------ERROR:failedtosolve:DeadlineExceeded:DeadlineExceeded:DeadlineExceeded:nv
- 实验踩坑 flash_attn_2_cuda undifiend symol
崩溃李
linux
报错RuntimeError:Failedtoimporttransformers.models.llama.modeling_llamabecauseofthefollowingerror(lookuptoseeitstraceback):…/lib/python3.10/site-packages/flash_attn_2_cuda.cpython-310-x86_64-linux-gnu.s
- LLaVA微调debug:ImportError: xxx/flash_attn_2_cuda.cpython-310-x86_64-linux-gnu.so: undefined symbol:
同屿Firmirin
大模型debug笔记linux运维服务器深度学习语言模型
完整报错信息:ImportError:/home/linjl/anaconda3/envs/sd/lib/python3.10/site-packages/flash_attn_2_cuda.cpython-310-x86_64-linux-gnu.so:undefinedsymbol:_ZN3c105ErrorC2ENS_14SourceLocationENSt7__cxx1112basic_s
- 从Nvidia切换到华为云昇腾芯片的入门技巧
sunrise_ccx
华为云人工智能
Nvidia太贵,尝试使用国产的芯片做AI。等价命令Nvidia昇腾说明nvidia-sminpu-smiinfo查看机器上显卡信息npu-smiinfo-tusages-i查看显卡使用率CUDA_VISIBLE_DEVICESASCEND_RT_VISIBLE_DEVICES指定要使用的显卡【未完待续】
- Python&aconda系列:CUDA+Anaconda的安装以及 Conda实用命令
坦笑&&life
#pythonpythonconda开发语言
这里写目录标题一.深度学习环境配置:CUDA+Anaconda的安装3.1.1CUDA简介3.1.2查看电脑显卡型号是否支持CUDA的安装3.1.3查看电脑显卡的驱动版本3.1.4根据显卡驱动版本下载支持的CUDA版本3.1.5检查CUDA是否安装成功3.1.6安装Anaconda3.1.7检查Anaconda是否安装成功3.1.8配置Anaconda的安装包下载源二.Conda实用命令conda
- pytorch单机多卡训练_数据并行DataParallel
Major Tom _
pytorch人工智能python
1.单机多卡概述单卡多级的模型训练,即并行训练,可分为数据并行和模型并行两种.数据并行是指,多张GPUs使用相同的模型副本,但采用不同batch的数据进行训练.模型并行是指,多张GPUs使用同一batch的数据,分别训练模型的不同部分.2.DataParallel源码2.1需要传入的参数module(Module):被并行运算的模型device_ids=None:CUDAdevicesoutput
- Tesla V100驱动安装
郭宝才
linux服务器运维
确认操作系统kernel版本,参考链接:https://docs.nvidia.com/cuda/archive/12.2.0/cuda-installation-guide-linux/index.html安装依赖yuminstall-ygccgcc-c++rdma-coredkmselfutils-libelf-develntpyuminstall-ykernel-devel-$(uname-
- 训练入口+保存模型
如若123
深度学习python人工智能
importargparsefromtorch.utils.dataimportDataLoaderfromtesting.testingimport*frommodels.model_coupled_v1importUnetfromdata.data_loadimport*importglobfromcollectionsimportOrderedDictdevice="cuda:0"iftor
- 花费上万元的 RTX4090,普通人真的需要它的性能吗?
显卡
众所周知,RTX4090是当之无愧的显卡界卡皇。但对于普通人来说,花费上万元甚至更多去拥有它,真的值得吗?01RTX4090的性能规格它拥有超多的CUDA核心,数量高达16384个。这就好比有一支庞大的计算大军,能够快速处理各种复杂的图形计算任务。无论是玩高画质的3A大作游戏,还是进行专业的图形设计、视频编辑等工作,都能轻松应对。再说说它的显存,容量达到了惊人的24GB。这就像一个巨大的仓库,可以
- Windows 下Mamba2 环境安装问题记录及解决方法(causal_conv1d=1.4.0,mamba_ssm=2.2.2)
yyywxk
#Python模块有关问题mambapythonwindowsmamba2
导航安装教程导航Mamba及Vim安装问题参看本人博客:Mamba环境安装踩坑问题汇总及解决方法(初版)Linux下Mamba及Vim安装问题参看本人博客:Mamba环境安装踩坑问题汇总及解决方法(重置版)Windows下Mamba的安装参看本人博客:Window下Mamba环境安装踩坑问题汇总及解决方法(无需绕过selective_scan_cuda)Linux下Vim安装问题参看本人博客:Li
- Linux 下 Vim 环境安装踩坑问题汇总及解决方法(重置版)
yyywxk
#Python模块有关问题linuxvimmamba
导航安装教程导航Mamba及Vim安装问题参看本人博客:Mamba环境安装踩坑问题汇总及解决方法(初版)Linux下Mamba及Vim安装问题参看本人博客:Mamba环境安装踩坑问题汇总及解决方法(重置版)Windows下Mamba的安装参看本人博客:Window下Mamba环境安装踩坑问题汇总及解决方法(无需绕过selective_scan_cuda)Linux下Vim安装问题参看本人博客:Li
- GPU 集群和分布式计算
AI天才研究院
计算AI大模型企业级应用开发实战大数据AI人工智能javapythonjavascriptkotlingolang架构人工智能大厂程序员硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLM系统架构设计软件哲学Agent程序员实现财富自由
《GPU集群和分布式计算》关键词:GPU集群、分布式计算、CUDA、OpenACC、OpenMP、性能优化、故障处理、案例分析摘要:本文详细探讨了GPU集群和分布式计算的基本概念、架构、编程模型以及应用场景。通过剖析GPU集群在多个领域的实际应用,探讨了性能优化和故障处理的方法,并提供了若干案例以加深理解。文章旨在为读者提供一个全面而深入的GPU集群和分布式计算的知识框架。《GPU集群和分布式计算
- error: [Errno 2] No such file or directory: ‘:/usr/local/cuda-12.1/bin/nvcc‘: ‘:/usr/local/cuda-12.1
鲤鱼不懂
bugcuda
一背景最近在服务器使用cuda报错,昨天使用还可以,今日就出问题,在此记录解决方案。二报错信息error:[Errno2]Nosuchfileordirectory:':/usr/local/cuda-12.1/bin/nvcc':':/usr/local/cuda-12.1/bin/nvcc'三解决方案终端输入以下命令exportCUDA_HOME=/usr/local/cuda-12.1
- 【CUDA-BEVFusion】tool/build_trt_engine.sh 文件解读
old_power
计算机视觉计算机视觉深度学习
build_trt_engine.sh#configuretheenvironment.tool/environment.shif["$ConfigurationStatus"!="Success"];thenecho"Exitduetoconfigurefailure."exitfi#tensorrtversion#version=`trtexec|grep-m1TensorRT|sed-n"s
- 小土堆学习笔记10(利用GPU训练于模型验证)
干啥都是小小白
pytorch学习——小土堆学习笔记深度学习
1.利用GPU训练GPU可优化操作如下操作方法1方法2数据获取判断是否可以使用GPU,如果可以直接model.cuda()先设定device,用的时候直接model.to(“device”)损失函数1.1利用以前实战模型训练(经过完整测试最高到70%左右的正确率)实战模型如下:小土堆学习笔记5(sequential与小实战)-CSDN博客具体代码如下:classmymodel(Module):de
- 安装CUDA Cudnn Pytorch(GPU版本)步骤
学乐乐
pytorch人工智能python
一.先看自己的电脑NVIDIA支持CUDA版本是多少?1.打开NVIDIA控制面板2.点击帮助---系统信息--组件我的支持CUDA11.6二.再看支持Pytorch的CUDA版本三.打开CUDA官网下载CUDA11.6下载好后,安装选择自定义然后安装位置(先去F盘建个CUDA-manger文件夹然后在里面建个CUDA11.6文件夹再在里面建立CUDA1CUDA2这两个文件夹前两个位置选到CUDA
- 【环境安装】安装LLaMA-Factory
BoostingIsm
环境安装深度学习人工智能
【机器背景说明】Linux-Centos7;显卡驱动:DriverVersion:460.106.00;TeslaP40*2【目标环境说明】torch==1.13.1+cu116llamafactory==0.9.2.dev01.CUDA11.6软件安装CUDA11.6软件有两种安装方式,一个是直接安装到Pip环境中、一种是下载到本地安装1.1在Pip环境里直接安装(推荐)此方法优点:省事不需要通
- [黑洞与暗粒子]没有光的世界
comsci
无论是相对论还是其它现代物理学,都显然有个缺陷,那就是必须有光才能够计算
但是,我相信,在我们的世界和宇宙平面中,肯定存在没有光的世界....
那么,在没有光的世界,光子和其它粒子的规律无法被应用和考察,那么以光速为核心的
&nbs
- jQuery Lazy Load 图片延迟加载
aijuans
jquery
基于 jQuery 的图片延迟加载插件,在用户滚动页面到图片之后才进行加载。
对于有较多的图片的网页,使用图片延迟加载,能有效的提高页面加载速度。
版本:
jQuery v1.4.4+
jQuery Lazy Load v1.7.2
注意事项:
需要真正实现图片延迟加载,必须将真实图片地址写在 data-original 属性中。若 src
- 使用Jodd的优点
Kai_Ge
jodd
1. 简化和统一 controller ,抛弃 extends SimpleFormController ,统一使用 implements Controller 的方式。
2. 简化 JSP 页面的 bind, 不需要一个字段一个字段的绑定。
3. 对 bean 没有任何要求,可以使用任意的 bean 做为 formBean。
使用方法简介
- jpa Query转hibernate Query
120153216
Hibernate
public List<Map> getMapList(String hql,
Map map) {
org.hibernate.Query jpaQuery = entityManager.createQuery(hql);
if (null != map) {
for (String parameter : map.keySet()) {
jp
- Django_Python3添加MySQL/MariaDB支持
2002wmj
mariaDB
现状
首先,
[email protected] 中默认的引擎为 django.db.backends.mysql 。但是在Python3中如果这样写的话,会发现 django.db.backends.mysql 依赖 MySQLdb[5] ,而 MySQLdb 又不兼容 Python3 于是要找一种新的方式来继续使用MySQL。 MySQL官方的方案
首先据MySQL文档[3]说,自从MySQL
- 在SQLSERVER中查找消耗IO最多的SQL
357029540
SQL Server
返回做IO数目最多的50条语句以及它们的执行计划。
select top 50
(total_logical_reads/execution_count) as avg_logical_reads,
(total_logical_writes/execution_count) as avg_logical_writes,
(tot
- spring UnChecked 异常 官方定义!
7454103
spring
如果你接触过spring的 事物管理!那么你必须明白 spring的 非捕获异常! 即 unchecked 异常! 因为 spring 默认这类异常事物自动回滚!!
public static boolean isCheckedException(Throwable ex)
{
return !(ex instanceof RuntimeExcep
- mongoDB 入门指南、示例
adminjun
javamongodb操作
一、准备工作
1、 下载mongoDB
下载地址:http://www.mongodb.org/downloads
选择合适你的版本
相关文档:http://www.mongodb.org/display/DOCS/Tutorial
2、 安装mongoDB
A、 不解压模式:
将下载下来的mongoDB-xxx.zip打开,找到bin目录,运行mongod.exe就可以启动服务,默