hive join

hive(0.9.0):

1.支持equality joins, outer joins, and left semi joins
2.只支持等值条件
3.支持多表join

原理
hive执行引擎会将HQL“翻译”成为map-reduce任务,如果多张表使用同一列做join则将被翻译成一个reduce,否则将被翻译成多个map-reduce任务。
eg:
SELECT a.val, b.val, c.val FROM a JOIN b ON (a.key = b.key1) JOIN c ON (c.key = b.key1)将被翻译成1个map-reduce任务
SELECT a.val, b.val, c.val FROM a JOIN b ON (a.key = b.key1) JOIN c ON (c.key = b.key2)
将被翻译成2个map-reduce任务
这个很好理解,一般来说(map side join除外,后面会介绍),map过程负责分发数据,具体的join操作在reduce完成,因此,如果多表基于不同的列做join,则无法在一轮map-reduce任务中将所有相关数据shuffle到统一个reducer
对于多表join,hive会将前面的表缓存在reducer的内存中,然后后面的表会流式的进入reducer和reducer内存中其它的表做join。
eg:

[plain] view plain copy
  1. SELECTa.val,b.val,c.valFROMaJOINbON(a.key=b.key1)JOINcON(c.key=b.key1)
在reducer中,a、b表待join的数据会放在内存中。
这会引起一些问题,如果reducer个数不足或者a、b表数据过大,则可能oom
因此,我们需要将数据量最大的表放到最后,或者通过“STREAMTABLE”显示指定reducer流式读入的表
eg:
SELECT /*+ STREAMTABLE(a) */ a.val, b.val, c.val FROM a JOIN b ON (a.key = b.key1) JOIN c ON (c.key = b.key1)此时,b、c表数据在reducer将放在内存中

Outer join
Outer join包括left、right、full outer join,其目的是针对不匹配的情况做一些控制。
表a:

SELECT a.val, b.val FROM a LEFT OUTER JOIN b ON (a.key=b.key)LEFT OUTER JOIN:如果a.key中找不到对应的b.key,则输出a.val,NULL

LEFT OUTER JOIN可以用来代替not in(not in 在Hive0.8才支持)
eg:
select a.key from a left outer join b on a.key=b.key where b.key1 is null

实例:
[plain] view plain copy
  1. hive>select*froma;
  2. OK
  3. keyvalue
  4. 1a
  5. 2b
  6. 3c
  7. Timetaken:0.155seconds
  8. hive>select*fromb;
  9. OK
  10. keyvalue
  11. 1d
  12. 2e
  13. 4f
  14. hive>SELECTa.value,b.valueFROMaLEFTOUTERJOINbON(a.key=b.key);
  15. OK
  16. valuevalue
  17. ad
  18. be
  19. cNULL
  20. hive>SELECTa.value,b.valueFROMaRIGHTOUTERJOINbON(a.key=b.key);
  21. OK
  22. valuevalue
  23. ad
  24. be
  25. NULLf
  26. hive>SELECTa.value,b.valueFROMaFULLOUTERJOINbON(a.key=b.key);
  27. OK
  28. valuevalue
  29. ad
  30. be
  31. cNULL
  32. NULLf

Left Semi Join

hive当前不知in/exists,left semi join是in/exists更有效率的实现。
eg:
SELECT a.key, a.value FROM a WHERE a.key in (SELECT b.key FROM B);可以使用如下语句代替:
SELECT a.key, a.val FROM a LEFT SEMI JOIN b on (a.key = b.key)

Map Side Join
假如join两张表,其中有一张表特别小(可以放到内存中),那么可以使用Map-side join。Map side join是在mapper中做join,原理是将其中一张join表放到每个mapper任务的内存中,从而不用reducer任务,在mapper中就完成join。Map side join不适合FULL/RIGHT OUTER JOIN,理由大家思考下。
示例:
SELECT /*+ MAPJOIN(b) */ a.key, a.value FROM a join b on a.key = b.key


Bucketed Map Join
Bucketed map join是一种特殊的map side join,其针对的是所有的表都使用待join的key作为bucket列,并且bucket数量彼此有倍数关系的场景。在这种场景下,由于不需要将整张表导入内存,只需要将相应的bucket导入内存,因此,适宜一些数据量比较大的表。
例如,Table a使用key作为bucket列,共有8个bucket,Table b也是用key作为bucket列,有16个bucket,则使用Map side join,a只需要将b对应的2个bucket放入内存即可,如下:
SELECT /*+ MAPJOIN(b) */ a.key, a.value
FROM a join b on a.key = b.key


reference:
hive join syntax

1.支持equality joins, outer joins, and left semi joins
2.只支持等值条件
3.支持多表join

原理
hive执行引擎会将HQL“翻译”成为map-reduce任务,如果多张表使用同一列做join则将被翻译成一个reduce,否则将被翻译成多个map-reduce任务。
eg:
SELECT a.val, b.val, c.val FROM a JOIN b ON (a.key = b.key1) JOIN c ON (c.key = b.key1)将被翻译成1个map-reduce任务
SELECT a.val, b.val, c.val FROM a JOIN b ON (a.key = b.key1) JOIN c ON (c.key = b.key2)
将被翻译成2个map-reduce任务
这个很好理解,一般来说(map side join除外,后面会介绍),map过程负责分发数据,具体的join操作在reduce完成,因此,如果多表基于不同的列做join,则无法在一轮map-reduce任务中将所有相关数据shuffle到统一个reducer
对于多表join,hive会将前面的表缓存在reducer的内存中,然后后面的表会流式的进入reducer和reducer内存中其它的表做join。
eg:

[plain] view plain copy
  1. SELECTa.val,b.val,c.valFROMaJOINbON(a.key=b.key1)JOINcON(c.key=b.key1)
在reducer中,a、b表待join的数据会放在内存中。
这会引起一些问题,如果reducer个数不足或者a、b表数据过大,则可能oom
因此,我们需要将数据量最大的表放到最后,或者通过“STREAMTABLE”显示指定reducer流式读入的表
eg:
SELECT /*+ STREAMTABLE(a) */ a.val, b.val, c.val FROM a JOIN b ON (a.key = b.key1) JOIN c ON (c.key = b.key1)此时,b、c表数据在reducer将放在内存中

Outer join
Outer join包括left、right、full outer join,其目的是针对不匹配的情况做一些控制。
表a:

SELECT a.val, b.val FROM a LEFT OUTER JOIN b ON (a.key=b.key)LEFT OUTER JOIN:如果a.key中找不到对应的b.key,则输出a.val,NULL

LEFT OUTER JOIN可以用来代替not in(not in 在Hive0.8才支持)
eg:
select a.key from a left outer join b on a.key=b.key where b.key1 is null

实例:
[plain] view plain copy
  1. hive>select*froma;
  2. OK
  3. keyvalue
  4. 1a
  5. 2b
  6. 3c
  7. Timetaken:0.155seconds
  8. hive>select*fromb;
  9. OK
  10. keyvalue
  11. 1d
  12. 2e
  13. 4f
  14. hive>SELECTa.value,b.valueFROMaLEFTOUTERJOINbON(a.key=b.key);
  15. OK
  16. valuevalue
  17. ad
  18. be
  19. cNULL
  20. hive>SELECTa.value,b.valueFROMaRIGHTOUTERJOINbON(a.key=b.key);
  21. OK
  22. valuevalue
  23. ad
  24. be
  25. NULLf
  26. hive>SELECTa.value,b.valueFROMaFULLOUTERJOINbON(a.key=b.key);
  27. OK
  28. valuevalue
  29. ad
  30. be
  31. cNULL
  32. NULLf

Left Semi Join

hive当前不知in/exists,left semi join是in/exists更有效率的实现。
eg:
SELECT a.key, a.value FROM a WHERE a.key in (SELECT b.key FROM B);可以使用如下语句代替:
SELECT a.key, a.val FROM a LEFT SEMI JOIN b on (a.key = b.key)

Map Side Join
假如join两张表,其中有一张表特别小(可以放到内存中),那么可以使用Map-side join。Map side join是在mapper中做join,原理是将其中一张join表放到每个mapper任务的内存中,从而不用reducer任务,在mapper中就完成join。Map side join不适合FULL/RIGHT OUTER JOIN,理由大家思考下。
示例:
SELECT /*+ MAPJOIN(b) */ a.key, a.value FROM a join b on a.key = b.key


Bucketed Map Join
Bucketed map join是一种特殊的map side join,其针对的是所有的表都使用待join的key作为bucket列,并且bucket数量彼此有倍数关系的场景。在这种场景下,由于不需要将整张表导入内存,只需要将相应的bucket导入内存,因此,适宜一些数据量比较大的表。
例如,Table a使用key作为bucket列,共有8个bucket,Table b也是用key作为bucket列,有16个bucket,则使用Map side join,a只需要将b对应的2个bucket放入内存即可,如下:
SELECT /*+ MAPJOIN(b) */ a.key, a.value
FROM a join b on a.key = b.key


reference:
hive join syntax

你可能感兴趣的:(hive)