Given an array S of n integers, are there elements a, b, c, and d in S such that a + b + c + d = target? Find all unique quadruplets in the array which gives the sum of target.
Note:
Elements in a quadruplet (a,b,c,d) must be in non-descending order. (ie, a ≤ b ≤ c ≤ d)
The solution set must not contain duplicate quadruplets.
For example, given array S = {1 0 -1 0 -2 2}, and target = 0.
A solution set is:
(-1, 0, 0, 1)
(-2, -1, 1, 2)
(-2, 0, 0, 2)
3sum的扩展
public List<List<Integer>> fourSum(int[] num, int target) {
List<List<Integer>> result = new ArrayList<List<Integer>>();
if (num == null || num.length < 4) {
return result;
}
int temp = Integer.MAX_VALUE;
Arrays.sort(num);
for (int i = 0; i < num.length - 3; i++) {
int tar3 = target - num[i];
while (temp == tar3 && i < num.length - 3) {
i++;
tar3 = target - num[i];
}
List<List<Integer>> res3 = threeSum(num, tar3, i + 1,
num.length - 1);
for (List<Integer> ls : res3) {
ls.add(0, num[i]);
result.add(ls);
}
temp = tar3;
}
return result;
}
public List<List<Integer>> threeSum(int[] num, int target, int begin,
int end) {
List<List<Integer>> result = new ArrayList<List<Integer>>();
int temp = Integer.MAX_VALUE;
for (int i = begin; i < end; i++) {
int tar = target - num[i];
while (temp == tar && i < end) {
i++;
tar = target - num[i];
}
int less = i + 1;
int over = end;
while (less < over) {
if (tar > num[less] + num[over]) {
less++;
while (num[less] == num[less - 1] && less < over) {
less++;
}
} else if (tar < num[less] + num[over]) {
over--;
while (num[over] == num[over + 1] && over > less) {
over--;
}
} else {
int[] c = { num[i], num[less], num[over] };
List<Integer> temp1 = new ArrayList<Integer>();
for (int k : c) {
temp1.add(k);
}
result.add(temp1);
over--;
while (num[over] == num[over + 1] && over > less) {
over--;
}
less++;
while (num[less] == num[less - 1] && less < over) {
less++;
}
}
}
temp = tar;
}
return result;
}