Hadoop Map Reduce Task默认任务数调优


mapred.tasktracker.map.tasks.maximum

<wbr></wbr>

官方解释:The maximum number of map tasks that will berun<wbr><wbr>simultaneously by a tasktracker.</wbr></wbr>

<wbr></wbr>

我的理解:一个tasktracker最多可以同时运行的map任务数量

<wbr></wbr>

默认值:2

<wbr></wbr>

优化值:mapred.tasktracker.map.tasks.maximum = cpu数量

<wbr></wbr>

cpu数量 = 服务器CPU总核数 / 每个CPU的核数
服务器CPU总核数 = more /proc/cpuinfo | grep 'processor' | wc -l
每个CPU的核数 = more /proc/cpuinfo | grep 'cpu cores'

mapred.map.tasks

官方的解释:The default number of map tasks per job

<wbr></wbr>

我的解释:一个Job会使用task tracker的map任务槽数量,这个值≤<wbr>mapred.tasktracker.map.tasks.maximum</wbr>

<wbr></wbr>

默认值:2

<wbr></wbr>

优化值:

  1. CPU数量 (我们目前的实践值)
  2. (CPU数量 > 2) ? (CPU数量 * 0.75) : 1<wbr>(mapr的官方建议)</wbr>

<wbr></wbr>

注意:map任务的数量是由inputspilit决定的,和上面两个参数无关

mapred.tasktracker.reduce.tasks.maximum

<wbr></wbr>

官方解释:The maximum number of reduce tasks that will berun<wbr><wbr>simultaneously by a tasktracker.</wbr></wbr>

<wbr></wbr>

我的理解:一个task tracker最多可以同时运行的reduce任务数量

<wbr></wbr>

默认值:2

<wbr></wbr>

优化值:<wbr>(CPU数量 &gt; 2) ? (CPU数量 * 0.50):1 (mapr的官方建议)</wbr>

mapred.reduce.tasks

<wbr></wbr>

官方解释:The default number of reduce tasks per job. Typically set to99%<wbr><wbr>of the cluster's reducecapacity, so that if a node fails the reducescan<wbr><wbr>still be executed in asingle wave.</wbr></wbr></wbr></wbr>

<wbr></wbr>

我的理解:一个Job会使用task tracker的reduce任务槽数量

<wbr></wbr>

默认值:1

<wbr></wbr>

优化值:

  • 0.95 * mapred.tasktracker.tasks.maximum

理由:启用95%的reduce任务槽运行task, recudetask运行一轮就可以完成。剩余5%的任务槽永远失败任务,重新执行

  • 1.75 * mapred.tasktracker.tasks.maximum

理由:因为reduce task数量超过reduce槽数,所以需要两轮才能完成所有reducetask。具体快的原理我没有完全理解,上原文:

<wbr></wbr>

<wbr><wbr><wbr><strong>hadoop官方wiki: 写道</strong></wbr></wbr></wbr>

At 1.75 the faster nodes will finish their first round of reducesand launch a second round of reduces doing a much better job ofload balancing.

你可能感兴趣的:(hadoop)