2sum的算法复杂度是O(N log N) 因为排序用了N log N以及头尾指针的搜索是线性的,所以总体是O(N log N),好了现在考虑3sum, 有了2sum其实3sum就不难了,这样想:先取出一个数,那么我只要在剩下的数字里面找到两个数字使得他们的和等于(target – 那个取出的数)就可以了吧。所以3sum就退化成了2sum, 取出一个数字,这样的数字有N个,所以3sum的算法复杂度就是O(N^2 ), 注意这里复杂度是N平方,因为你排序只需要排一次,后面的工作都是取出一个数字,然后找剩下的两个数字,找两个数字是2sum用头尾指针线性扫,这里很容易错误的将复杂度算成O(N^2 log N),这个是不对的。我们继续的话4sum也就可以退化成3sum问题(copyright @sigmainfy),那么以此类推,K-sum一步一步退化,最后也就是解决一个2sum的问题,K sum的复杂度是O(n^(K-1))。 这个界好像是最好的界了,也就是K-sum问题最好也就能做到O(n^(K-1))复杂度,之前有看到过有人说可以严格数学证明,这里就不深入研究了。
class Solution { public: vector< vector > findZeroSumInSortedArr(vector &num, int begin, int count, int target) { vector<vector > ret; vector tuple; set visited; if (count == 2) { int i = begin, j = num.size()-1; while (i < j) { int sum = num[i] + num[j]; if (sum == target && visited.find(num[i]) == visited.end()) { tuple.clear(); visited.insert(num[i]); visited.insert(num[j]); tuple.push_back(num[i]); tuple.push_back(num[j]); ret.push_back(tuple); i++; j–; } else if (sum < target) { i++; } else { j–; } } } else { for (int i=begin; i<num.size(); i++) { if (visited.find(num[i]) == visited.end()) { visited.insert(num[i]); vector subRet = findZeroSumInSortedArr(num, i+1, count-1, target-num[i]); if (!subRet.empty()) { for (int j=0; j<subRet.size(); j++) { subRet[j].insert(subRet[j].begin(), num[i]); } ret.insert(ret.end(), subRet.begin(), subRet.end()); } } } } return ret; } vector threeSum(vector &num) { sort(num.begin(), num.end()); return findZeroSumInSortedArr(num, 0, 3, 0); } vector fourSum(vector &num, int target) { sort(num.begin(), num.end()); return findZeroSumInSortedArr(num, 0, 4, target); } };
From:
http://tech-wonderland.net/blog/summary-of-ksum-problems.html