接上回“分治法”
二分查找从实现上可以分为递归和非递归两种形式, 其算法的复杂度为 |_log n_| + 1
代码简单易懂:
public class bsearch { private static int[] s = { 1, 2, 3, 5, 8, 11, 21, 188, 211 }; public static void main(string[] args) { system.out.println(bsearchrecursion(s, 0, s.length - 1, 11)); system.out.println(bsearchnonrecursion(s, 0, s.length - 1, 11)); } /** * 递归 */ private static int bsearchrecursion(int[] s, int low, int high, int key) { int mid = (low + high) / 2; if(s[mid] == key) return mid; else if(s[mid] > key) return bsearchrecursion(s, low, mid - 1, key); else return bsearchrecursion(s, mid -1, high, key); } /** * 非递归 */ private static int bsearchnonrecursion(int[] s, int low, int high, int key) { while(low <= high) { int mid = (low + high) / 2; if(s[mid] == key) return mid; else if(s[mid] > key) high = mid - 1; else low = mid + 1; } return -1; }}
由于二分查找只限于顺序存储的有序表, 对于插入、删除操作苦难。 所以其使用于不经常变动且查找频繁的有序表。