思路:离散化
分析:
1 这一题的区间的最大值为10^9而n最大为5000,很明显就是利用离散化
2 题目中说了区间[0,10^9]刚开始为白色,而给定重刷的区间的值是大于0小于10^9的,所以我们应该开始就要考虑到0和10^9.
3 然后我们应该注意这题是对线段染色,所以我们应该要注意在处理的时候应该要把这些区间看成点来处理,然后会有两种方法分别是暴力和线段树
代码
线段树
#include<cstdio> #include<cstring> #include<iostream> #include<algorithm> using namespace std; const int MAXN = 10010; struct Node{ int left; int right; int mark; char color; }; Node node[4*MAXN] , tmp[MAXN]; int n , pos; int num[MAXN]; //二分查找 int search(int x){ int left , right; left = 1 , right = pos-1; while(left <= right){ int mid = (left + right)>>1; if(num[mid] == x) return mid; else if(num[mid] > x) right = mid-1; else left = mid+1; } } //建立线段树 void buildTree(int left , int right , int pos){ node[pos].left = left; node[pos].right = right; node[pos].mark = 0; if(left == right) return; int mid = (left+right)>>1; buildTree(left , mid , pos<<1); buildTree(mid+1 , right , (pos<<1)+1); } //向下更新 void push_down(int pos){ if(node[pos].mark != -1){ node[pos<<1].mark = node[(pos<<1)+1].mark = node[pos].mark; node[pos].mark = -1; } } //更新 void update(int left , int right , int value , int pos){ if(left <= node[pos].left && right >= node[pos].right){ node[pos].mark = value; return; } push_down(pos); int mid = (node[pos].left + node[pos].right)>>1; if(right <= mid) update(left , right , value , pos<<1); else if(left > mid) update(left , right , value , (pos<<1)+1); else{ update(left , mid , value , pos<<1); update(mid+1 , right , value , (pos<<1)+1); } } //询问 int query(int index , int pos){ if(node[pos].left == node[pos].right) return node[pos].mark; push_down(pos); int mid = (node[pos].left + node[pos].right)>>1; if(index <= mid) return query(index , pos<<1); else return query(index , (pos<<1)+1); } int main(){ while(scanf("%d" , &n) != EOF){ pos = 1; num[pos++] = 0; num[pos++] = 1e9; for(int i = 0 ; i < n ; i++){ scanf("%d %d %c" , &tmp[i].left , &tmp[i].right , &tmp[i].color); num[pos++] = tmp[i].left; num[pos++] = tmp[i].right; } sort(num+1 , num+pos); pos = unique(num+1 , num+pos)-num; //离散化 for(int i = 0 ; i < n ; i++){ tmp[i].left = search(tmp[i].left); tmp[i].right = search(tmp[i].right); } buildTree(1 , pos-1 , 1); //更新 for(int i = 0 ; i < n ; i++){ int value = 0; if(tmp[i].color == 'b') value = 1; update(tmp[i].left , tmp[i].right-1 , value , 1); } //求解最长的白色区间 int left , right; left = right = 0; for(int i = 1 ; i < pos-1 ; i++){ if(!query(i , 1)){ int j = i+1; while(j < pos-1 && !query(j , 1)) j++; int dis = num[j]-num[i]; if(dis > right-left){ left = num[i]; right = num[j]; } i = j; } } printf("%d %d\n" , left , right); } return 0; }
暴力
#include<cstdio> #include<cstring> #include<iostream> #include<algorithm> using namespace std; const int MAXN = 100010; struct Node{ int left; int right; int mark; char color; }; Node node[MAXN]; int vis[MAXN]; int num[MAXN]; int pos; //二分查找 int search(int x){ int left = 1 , right = pos-1; while(left <= right){ int mid = (left+right)>>1; if(num[mid] == x) return mid; else if(num[mid] > x) right = mid-1; else left = mid+1; } } int main(){ int n; while(scanf("%d" , &n) != EOF){ pos = 1; num[pos++] = 0; num[pos++] = 1e9; for(int i = 0 ; i < n ; i++){ scanf("%d %d %c" , &node[i].left , &node[i].right , &node[i].color); num[pos++] = node[i].left; num[pos++] = node[i].right; } sort(num+1 , num+pos); pos = unique(num+1 , num+pos)-num; for(int i = 0 ; i < n ; i++){ node[i].left = search(node[i].left); node[i].right = search(node[i].right); } //染色 memset(vis , 0 , sizeof(vis)); for(int i = 0 ; i < n ; i++){ int value = 0; if(node[i].color == 'b') value = 1; for(int j = node[i].left ; j < node[i].right ; j++) vis[j] = value; } int left , right; left = right = 0; //找最大的连续的白色区间 for(int i = 1 ; i < pos-1 ; i++){ if(!vis[i]){ int j = i+1; while(j < pos-1 && !vis[j]) j++; int dis = num[j]-num[i]; if(dis > right-left){ right = num[j]; left = num[i]; } i = j; } } printf("%d %d\n" , left , right); } return 0; }