- 浅谈MapReduce
Android路上的人
Hadoop分布式计算mapreduce分布式框架hadoop
从今天开始,本人将会开始对另一项技术的学习,就是当下炙手可热的Hadoop分布式就算技术。目前国内外的诸多公司因为业务发展的需要,都纷纷用了此平台。国内的比如BAT啦,国外的在这方面走的更加的前面,就不一一列举了。但是Hadoop作为Apache的一个开源项目,在下面有非常多的子项目,比如HDFS,HBase,Hive,Pig,等等,要先彻底学习整个Hadoop,仅仅凭借一个的力量,是远远不够的。
- Hadoop
傲雪凌霜,松柏长青
后端大数据hadoop大数据分布式
ApacheHadoop是一个开源的分布式计算框架,主要用于处理海量数据集。它具有高度的可扩展性、容错性和高效的分布式存储与计算能力。Hadoop核心由四个主要模块组成,分别是HDFS(分布式文件系统)、MapReduce(分布式计算框架)、YARN(资源管理)和HadoopCommon(公共工具和库)。1.HDFS(HadoopDistributedFileSystem)HDFS是Hadoop生
- hbase介绍
CrazyL-
云计算+大数据hbase
hbase是一个分布式的、多版本的、面向列的开源数据库hbase利用hadoophdfs作为其文件存储系统,提供高可靠性、高性能、列存储、可伸缩、实时读写、适用于非结构化数据存储的数据库系统hbase利用hadoopmapreduce来处理hbase、中的海量数据hbase利用zookeeper作为分布式系统服务特点:数据量大:一个表可以有上亿行,上百万列(列多时,插入变慢)面向列:面向列(族)的
- Spark集群的三种模式
MelodyYN
#Sparksparkhadoopbigdata
文章目录1、Spark的由来1.1Hadoop的发展1.2MapReduce与Spark对比2、Spark内置模块3、Spark运行模式3.1Standalone模式部署配置历史服务器配置高可用运行模式3.2Yarn模式安装部署配置历史服务器运行模式4、WordCount案例1、Spark的由来定义:Hadoop主要解决,海量数据的存储和海量数据的分析计算。Spark是一种基于内存的快速、通用、可
- HBase介绍
mingyu1016
数据库
概述HBase是一个分布式的、面向列的开源数据库,源于google的一篇论文《bigtable:一个结构化数据的分布式存储系统》。HBase是GoogleBigtable的开源实现,它利用HadoopHDFS作为其文件存储系统,利用HadoopMapReduce来处理HBase中的海量数据,利用Zookeeper作为协同服务。HBase的表结构HBase以表的形式存储数据。表有行和列组成。列划分为
- Hadoop windows intelij 跑 MR WordCount
piziyang12138
一、软件环境我使用的软件版本如下:IntellijIdea2017.1Maven3.3.9Hadoop分布式环境二、创建maven工程打开Idea,file->new->Project,左侧面板选择maven工程。(如果只跑MapReduce创建java工程即可,不用勾选Creatfromarchetype,如果想创建web工程或者使用骨架可以勾选)image.png设置GroupId和Artif
- ArcGIS地图切片原理与算法
数智侠
GIS
ArcGIS地图切图系列之(一)切片原理解析点击打开链接ArcGIS地图切图系列之(二)JAVA实现点击打开链接ArcGIS地图切图系列之(三)MapReduce实现点击打开链接
- 数据中台建设方案-基于大数据平台(下)
FRDATA1550333
大数据数据库架构数据库开发数据库
数据中台建设方案-基于大数据平台(下)1数据中台建设方案1.1总体建设方案1.2大数据集成平台1.3大数据计算平台1.3.1数据计算层建设计算层技术含量最高,最为活跃,发展也最为迅速。计算层主要实现各类数据的加工、处理和计算,为上层应用提供良好和充分的数据支持。大数据基础平台技术能力的高低,主要依赖于该层组件的发展。本建设方案满足甲方对于数据计算层建设的基本要求:利用了MapReduce、Spar
- MIT6.824 课程-MapReduce
余为民同志
6.824mapreduce分布式6.824
MapReduce:在大型集群上简化数据处理概要MapReduce是一种编程模型,它是一种用于处理和生成大型数据集的实现。用户通过指定一个用来处理键值对(Key/Value)的map函数来生成一个中间键值对集合。然后,再指定一个reduce函数,它用来合并所有的具有相同中间key的中间value。现实生活中有许多任务可以通过该模型进行表达,具体案例会在论文中展现出来。以这种函数式风格编写的程序能够
- Hadoop之mapreduce -- WrodCount案例以及各种概念
lzhlizihang
hadoopmapreduce大数据
文章目录一、MapReduce的优缺点二、MapReduce案例--WordCount1、导包2、Mapper方法3、Partitioner方法(自定义分区器)4、reducer方法5、driver(main方法)6、Writable(手机流量统计案例的实体类)三、关于片和块1、什么是片,什么是块?2、mapreduce启动多少个MapTask任务?四、MapReduce的原理五、Shuffle过
- Yarn介绍 - 大数据框架
why do not
大数据hadoop
YARN的概述YARN是一个资源调度平台,负责为运算程序提供服务器运算资源,相当于一个分布式的操作系统平台,而MapReduce等运算程序则相当于运行于操作系统之上的应用程序YARN是Hadoop2.x版本中的一个新特性。它的出现其实是为了解决第一代MapReduce编程框架的不足,提高集群环境下的资源利用率,这些资源包括内存,磁盘,网络,IO等。Hadoop2.X版本中重新设计的这个YARN集群
- 浅析大数据Hadoop之YARN架构
haotian1685
python数据清洗人工智能大数据大数据学习深度学习大数据大数据学习YARNhadoop
1.YARN本质上是资源管理系统。YARN提供了资源管理和资源调度等机制1.1原HadoopMapReduce框架对于业界的大数据存储及分布式处理系统来说,Hadoop是耳熟能详的卓越开源分布式文件存储及处理框架,对于Hadoop框架的介绍在此不再累述,读者可参考Hadoop官方简介。使用和学习过老Hadoop框架(0.20.0及之前版本)的同仁应该很熟悉如下的原MapReduce框架图:1.2H
- Hive的优势与使用场景
傲雪凌霜,松柏长青
后端大数据hivehadoop数据仓库
Hive的优势Hive作为一个构建在Hadoop上的数据仓库工具,具有许多优势,特别是在处理大规模数据分析任务时。以下是Hive的主要优势:1.与Hadoop生态系统的紧密集成Hive构建在Hadoop分布式文件系统(HDFS)之上,能够处理海量数据并进行分布式计算。它利用Hadoop的MapReduce或Spark来执行查询,具备高度扩展性,适合大数据处理。2.支持SQL-like查询语言(Hi
- Spark概念知识笔记
kuntoria
最近总结了个人的各项能力,发现在大数据这方面几乎没有涉及,因此想补充这方面的知识,丰富自己的知识体系,大数据生态主要包含:Hadoop和Spark两个部分,Spark作用相当于MapReduceMapReduce和Spark对比如下磁盘由于其物理特性现在,速度提升非常困难,远远跟不上CPU和内存的发展速度。近几十年来,内存的发展一直遵循摩尔定律,价格在下降,内存在增加。现在主流的服务器,几百GB或
- 【Hadoop】- MapReduce & YARN 初体验[9]
星星法术嗲人
hadoophadoopmapreduce
目录提交MapReduce程序至YARN运行1、提交wordcount示例程序1.1、先准备words.txt文件上传到hdfs,文件内容如下:1.2、在hdfs中创建两个文件夹,分别为/input、/output1.3、将创建好的words.txt文件上传到hdfs中/input1.4、提交MapReduce程序至YARN1.5、可通过node1:8088查看1.6、返回我们的服务器,检查输出文
- DAG (directed acyclic graph) 作为大数据执行引擎的优点
joeywen
分布式计算StormSparkStorm杂谈StormsparkDAG
TL;DR-ConceptuallyDAGmodelisastrictgeneralizationofMapReducemodel.DAG-basedsystemslikeSparkandTezthatareawareofthewholeDAGofoperationscandobetterglobaloptimizationsthansystemslikeHadoopMapReducewhicha
- Hadoop组件
静听山水
Hadoophadoop
这张图片展示了Hadoop生态系统的一些主要组件。Hadoop是一个开源的大数据处理框架,由Apache基金会维护。以下是每个组件的简短介绍:HBase:一个分布式、面向列的NoSQL数据库,基于GoogleBigTable的设计理念构建。HBase提供了实时读写访问大量结构化和半结构化数据的能力,非常适合大规模数据存储。Pig:一种高级数据流语言和执行引擎,用于编写MapReduce任务。Pig
- Hadoop-MapReduce机制原理
H.S.T不想卷
大数据hadoopmapreduce大数据
MapReduce机制原理1、MapReduce概述2、MapReduce特点3、MapReduce局限性4、MapTask5、Map阶段步骤:6、Reduce阶段步骤:7、MapReduce阶段图1、MapReduce概述 HadoopMapReduce是一个分布式计算框架,用于轻松编写分布式应用程序,这些应用程序以可靠,容错的方式并行处理大型硬件集群(数千个节点)上的大量数据(多TB数据集)
- EMR组件部署指南
ivwdcwso
运维EMR大数据开源运维
EMR(ElasticMapReduce)是一个大数据处理和分析平台,包含了多个开源组件。本文将详细介绍如何部署EMR的主要组件,包括:JDK1.8ElasticsearchKafkaFlinkZookeeperHBaseHadoopPhoenixScalaSparkHive准备工作所有操作都在/data目录下进行。首先安装JDK1.8:yuminstalljava-1.8.0-openjdk部署
- hive学习记录
2302_80695227
hive学习hadoop
一、Hive的基本概念定义:Hive是基于Hadoop的一个数据仓库工具,可以将结构化的数据文件映射为一张表,并提供类SQL查询功能。Hive将HQL(HiveQueryLanguage)转化成MapReduce程序或其他分布式计算引擎(如Tez、Spark)的任务进行计算。数据存储:Hive处理的数据存储在HDFS(HadoopDistributedFileSystem)上。执行引擎:Hive的
- Mapreduce是什么
whisky丶
简单来说,MapReduce是一个编程模型,用以进行大数据量的计算。HadoopMapReduce是一个软件框架,基于该框架能够容易地编写应用程序,这些应用程序能够运行在由上千个商用机器组成的大集群上,并以一种可靠的,具有容错能力的方式并行地处理上TB级别的海量数据集。Mapreduce的特点:软件框架并行处理可靠且容错大规模集群海量数据集
- Hadoop之MapReduce
qq_43198449
1.MapReduce解决的问题1)数据问题:10G的TXT文件2)生活问题:统计分类上海市的图书馆的书2.MapReduce是什么MapReduce是一种分布式的离线计算框架,是一种编程模型,用于大规模数据集(大于1TB)的并行运算将自己的程序运行在分布式系统上。概念是:Map(映射)"和"Reduce(归约)指定一个Map(映射)函数,用来把一组键值对映射成一组新的键值对,指定并发的Reduc
- 生产环境中MapReduce的最佳实践
大数据深度洞察
Hadoopmapreduce大数据
目录MapReduce跑的慢的原因MapReduce常用调优参数1.MapTask相关参数2.ReduceTask相关参数3.总体调优参数4.其他重要参数调优策略MapReduce数据倾斜问题1.数据预处理2.自定义Partitioner3.调整Reduce任务数4.小文件问题处理5.二次排序6.使用桶表7.使用随机前缀8.参数调优实施步骤MapReduce跑的慢的原因MapReduce程序效率的
- Hive 运行在 Tez 上
爱吃酸梨
大数据
Tez介绍Tez是一种基于内存的计算框架,速度比MapReduce要快解释:浅蓝色方块表示Map任务,绿色方块表示Reduce任务,蓝色边框的云朵表示中间结果落地磁盘。Tez下载Tez官网Tez在Hive上的运用前提要有Hadoop集群上传Tez压缩包到Hive节点上tar-zxvfapache-tez-0.9.1-bin.tar.gz-C/opt/module/tez-0.9.1修改$HIVE_
- 经验笔记:Hadoop
漆黑的莫莫
随手笔记笔记hadoop大数据
Hadoop经验笔记一、Hadoop概述Hadoop是一个开源软件框架,用于分布式存储和处理大规模数据集。其设计目的是为了在商用硬件上运行,具备高容错性和可扩展性。Hadoop的核心是HadoopDistributedFileSystem(HDFS)和YARN(YetAnotherResourceNegotiator),这两个组件加上MapReduce编程模型,构成了Hadoop的基本架构。二、H
- 大数据毕业设计hadoop+spark+hive微博舆情情感分析 知识图谱微博推荐系统
qq_79856539
javaweb大数据hadoop课程设计
(一)Selenium自动化Python爬虫工具采集新浪微博评论、热搜、文章等约10万条存入.csv文件作为数据集;(二)使用pandas+numpy或MapReduce对数据进行数据清洗,生成最终的.csv文件并上传到hdfs;(三)使用hive数仓技术建表建库,导入.csv数据集;(四)离线分析采用hive_sql完成,实时分析利用Spark之Scala完成;(五)统计指标使用sqoop导入m
- Data-Intensive Text Processing with MapReduce
西二旗小码农
自然语言处理(NLP)mapreduceprocessing算法integerhadooppair
大量高效的MapReduce程序因为它简单的编写方法而产生:除了准备输入数据之外,程序员只需要实现mapper和ruducer接口,或加上合并器(combiner)和分配器(partitioner)。所有其他方面的执行都透明地控制在由一个节点到上千个节点组成的,数据级别达到GB到PB级别的集群的执行框架中。然而,这就意味着程序员想在上面实现的算法必须表现为一些严格定义的组件,必须用特殊的方法把它们
- 双十一云起实验室体验专场,七大场景,体验有礼
阿里云天池
体验场景活动云计算大数据容器云原生
云起实验室云起实验室是阿里云为开发者打造的一站式体验学习平台,在这里你可以了解并亲自动手体验各类云产品和云计算基础,无需关注资源开通和底层产品,无需任何费用。只要有一颗想要了解云、学习云、体验云的心,这里就是你的上云第一站。场景介绍此次体验《双十一云起实验室体验专场》,涉及七大技术场景实践体验,云上实践,云上成长。\大数据计算场景《基于EMR离线数据分析》E-MapReduce(简称“EMR”)是
- 小白学习大数据测试之hadoop hdfs和MapReduce小实战
大数据学习02
转发是对小编的最大支持在湿货|大数据测试之hadoop单机环境搭建(超级详细版)这个基础上,我们来运行一个官网的MapReducedemo程序来看看效果和处理过程。大致步骤如下:新建一个文件test.txt,内容为HelloHadoopHelloxiaoqiangHellotestingbangHellohttp://xqtesting.sxl.cn将test.txt上传到hdfs的根目录/usr
- 虚拟机安装hadoop,hbase(单机伪集群模式)
流~星~雨
大数据相关hadoophbase大数据
虚拟机安装Hadoop,Hbase工作中遇到了大数据方面的一些技术栈,没有退路可言,只能去学习掌握它,就像当初做爬虫一样(虽然很简单),在数据爆发的现在,传统的数据库mysql,oracle显然在处理大数据量级的数据时显得力不从心,所以有些特定的业务需要引进能够处理大数据量的数据库,hadoop提供了分布式文件系统(HDFS)来存储数据,又提供了分布式计算框架(mapreduce)来对这些数据进行
- rust的指针作为函数返回值是直接传递,还是先销毁后创建?
wudixiaotie
返回值
这是我自己想到的问题,结果去知呼提问,还没等别人回答, 我自己就想到方法实验了。。
fn main() {
let mut a = 34;
println!("a's addr:{:p}", &a);
let p = &mut a;
println!("p's addr:{:p}", &a
- java编程思想 -- 数据的初始化
百合不是茶
java数据的初始化
1.使用构造器确保数据初始化
/*
*在ReckInitDemo类中创建Reck的对象
*/
public class ReckInitDemo {
public static void main(String[] args) {
//创建Reck对象
new Reck();
}
}
- [航天与宇宙]为什么发射和回收航天器有档期
comsci
地球的大气层中有一个时空屏蔽层,这个层次会不定时的出现,如果该时空屏蔽层出现,那么将导致外层空间进入的任何物体被摧毁,而从地面发射到太空的飞船也将被摧毁...
所以,航天发射和飞船回收都需要等待这个时空屏蔽层消失之后,再进行
&
- linux下批量替换文件内容
商人shang
linux替换
1、网络上现成的资料
格式: sed -i "s/查找字段/替换字段/g" `grep 查找字段 -rl 路径`
linux sed 批量替换多个文件中的字符串
sed -i "s/oldstring/newstring/g" `grep oldstring -rl yourdir`
例如:替换/home下所有文件中的www.admi
- 网页在线天气预报
oloz
天气预报
网页在线调用天气预报
<%@ page language="java" contentType="text/html; charset=utf-8"
pageEncoding="utf-8"%>
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transit
- SpringMVC和Struts2比较
杨白白
springMVC
1. 入口
spring mvc的入口是servlet,而struts2是filter(这里要指出,filter和servlet是不同的。以前认为filter是servlet的一种特殊),这样就导致了二者的机制不同,这里就牵涉到servlet和filter的区别了。
参见:http://blog.csdn.net/zs15932616453/article/details/8832343
2
- refuse copy, lazy girl!
小桔子
copy
妹妹坐船头啊啊啊啊!都打算一点点琢磨呢。文字编辑也写了基本功能了。。今天查资料,结果查到了人家写得完完整整的。我清楚的认识到:
1.那是我自己觉得写不出的高度
2.如果直接拿来用,很快就能解决问题
3.然后就是抄咩~~
4.肿么可以这样子,都不想写了今儿个,留着作参考吧!拒绝大抄特抄,慢慢一点点写!
- apache与php整合
aichenglong
php apache web
一 apache web服务器
1 apeche web服务器的安装
1)下载Apache web服务器
2)配置域名(如果需要使用要在DNS上注册)
3)测试安装访问http://localhost/验证是否安装成功
2 apache管理
1)service.msc进行图形化管理
2)命令管理,配
- Maven常用内置变量
AILIKES
maven
Built-in properties
${basedir} represents the directory containing pom.xml
${version} equivalent to ${project.version} (deprecated: ${pom.version})
Pom/Project properties
Al
- java的类和对象
百合不是茶
JAVA面向对象 类 对象
java中的类:
java是面向对象的语言,解决问题的核心就是将问题看成是一个类,使用类来解决
java使用 class 类名 来创建类 ,在Java中类名要求和构造方法,Java的文件名是一样的
创建一个A类:
class A{
}
java中的类:将某两个事物有联系的属性包装在一个类中,再通
- JS控制页面输入框为只读
bijian1013
JavaScript
在WEB应用开发当中,增、删除、改、查功能必不可少,为了减少以后维护的工作量,我们一般都只做一份页面,通过传入的参数控制其是新增、修改或者查看。而修改时需将待修改的信息从后台取到并显示出来,实际上就是查看的过程,唯一的区别是修改时,页面上所有的信息能修改,而查看页面上的信息不能修改。因此完全可以将其合并,但通过前端JS将查看页面的所有信息控制为只读,在信息量非常大时,就比较麻烦。
- AngularJS与服务器交互
bijian1013
JavaScriptAngularJS$http
对于AJAX应用(使用XMLHttpRequests)来说,向服务器发起请求的传统方式是:获取一个XMLHttpRequest对象的引用、发起请求、读取响应、检查状态码,最后处理服务端的响应。整个过程示例如下:
var xmlhttp = new XMLHttpRequest();
xmlhttp.onreadystatechange
- [Maven学习笔记八]Maven常用插件应用
bit1129
maven
常用插件及其用法位于:http://maven.apache.org/plugins/
1. Jetty server plugin
2. Dependency copy plugin
3. Surefire Test plugin
4. Uber jar plugin
1. Jetty Pl
- 【Hive六】Hive用户自定义函数(UDF)
bit1129
自定义函数
1. 什么是Hive UDF
Hive是基于Hadoop中的MapReduce,提供HQL查询的数据仓库。Hive是一个很开放的系统,很多内容都支持用户定制,包括:
文件格式:Text File,Sequence File
内存中的数据格式: Java Integer/String, Hadoop IntWritable/Text
用户提供的 map/reduce 脚本:不管什么
- 杀掉nginx进程后丢失nginx.pid,如何重新启动nginx
ronin47
nginx 重启 pid丢失
nginx进程被意外关闭,使用nginx -s reload重启时报如下错误:nginx: [error] open() “/var/run/nginx.pid” failed (2: No such file or directory)这是因为nginx进程被杀死后pid丢失了,下一次再开启nginx -s reload时无法启动解决办法:nginx -s reload 只是用来告诉运行中的ng
- UI设计中我们为什么需要设计动效
brotherlamp
UIui教程ui视频ui资料ui自学
随着国际大品牌苹果和谷歌的引领,最近越来越多的国内公司开始关注动效设计了,越来越多的团队已经意识到动效在产品用户体验中的重要性了,更多的UI设计师们也开始投身动效设计领域。
但是说到底,我们到底为什么需要动效设计?或者说我们到底需要什么样的动效?做动效设计也有段时间了,于是尝试用一些案例,从产品本身出发来说说我所思考的动效设计。
一、加强体验舒适度
嗯,就是让用户更加爽更加爽的用你的产品。
- Spring中JdbcDaoSupport的DataSource注入问题
bylijinnan
javaspring
参考以下两篇文章:
http://www.mkyong.com/spring/spring-jdbctemplate-jdbcdaosupport-examples/
http://stackoverflow.com/questions/4762229/spring-ldap-invoking-setter-methods-in-beans-configuration
Sprin
- 数据库连接池的工作原理
chicony
数据库连接池
随着信息技术的高速发展与广泛应用,数据库技术在信息技术领域中的位置越来越重要,尤其是网络应用和电子商务的迅速发展,都需要数据库技术支持动 态Web站点的运行,而传统的开发模式是:首先在主程序(如Servlet、Beans)中建立数据库连接;然后进行SQL操作,对数据库中的对象进行查 询、修改和删除等操作;最后断开数据库连接。使用这种开发模式,对
- java 关键字
CrazyMizzz
java
关键字是事先定义的,有特别意义的标识符,有时又叫保留字。对于保留字,用户只能按照系统规定的方式使用,不能自行定义。
Java中的关键字按功能主要可以分为以下几类:
(1)访问修饰符
public,private,protected
p
- Hive中的排序语法
daizj
排序hiveorder byDISTRIBUTE BYsort by
Hive中的排序语法 2014.06.22 ORDER BY
hive中的ORDER BY语句和关系数据库中的sql语法相似。他会对查询结果做全局排序,这意味着所有的数据会传送到一个Reduce任务上,这样会导致在大数量的情况下,花费大量时间。
与数据库中 ORDER BY 的区别在于在hive.mapred.mode = strict模式下,必须指定 limit 否则执行会报错。
- 单态设计模式
dcj3sjt126com
设计模式
单例模式(Singleton)用于为一个类生成一个唯一的对象。最常用的地方是数据库连接。 使用单例模式生成一个对象后,该对象可以被其它众多对象所使用。
<?phpclass Example{ // 保存类实例在此属性中 private static&
- svn locked
dcj3sjt126com
Lock
post-commit hook failed (exit code 1) with output:
svn: E155004: Working copy 'D:\xx\xxx' locked
svn: E200031: sqlite: attempt to write a readonly database
svn: E200031: sqlite: attempt to write a
- ARM寄存器学习
e200702084
数据结构C++cC#F#
无论是学习哪一种处理器,首先需要明确的就是这种处理器的寄存器以及工作模式。
ARM有37个寄存器,其中31个通用寄存器,6个状态寄存器。
1、不分组寄存器(R0-R7)
不分组也就是说说,在所有的处理器模式下指的都时同一物理寄存器。在异常中断造成处理器模式切换时,由于不同的处理器模式使用一个名字相同的物理寄存器,就是
- 常用编码资料
gengzg
编码
List<UserInfo> list=GetUserS.GetUserList(11);
String json=JSON.toJSONString(list);
HashMap<Object,Object> hs=new HashMap<Object, Object>();
for(int i=0;i<10;i++)
{
- 进程 vs. 线程
hongtoushizi
线程linux进程
我们介绍了多进程和多线程,这是实现多任务最常用的两种方式。现在,我们来讨论一下这两种方式的优缺点。
首先,要实现多任务,通常我们会设计Master-Worker模式,Master负责分配任务,Worker负责执行任务,因此,多任务环境下,通常是一个Master,多个Worker。
如果用多进程实现Master-Worker,主进程就是Master,其他进程就是Worker。
如果用多线程实现
- Linux定时Job:crontab -e 与 /etc/crontab 的区别
Josh_Persistence
linuxcrontab
一、linux中的crotab中的指定的时间只有5个部分:* * * * *
分别表示:分钟,小时,日,月,星期,具体说来:
第一段 代表分钟 0—59
第二段 代表小时 0—23
第三段 代表日期 1—31
第四段 代表月份 1—12
第五段 代表星期几,0代表星期日 0—6
如:
*/1 * * * * 每分钟执行一次。
*
- KMP算法详解
hm4123660
数据结构C++算法字符串KMP
字符串模式匹配我们相信大家都有遇过,然而我们也习惯用简单匹配法(即Brute-Force算法),其基本思路就是一个个逐一对比下去,这也是我们大家熟知的方法,然而这种算法的效率并不高,但利于理解。
假设主串s="ababcabcacbab",模式串为t="
- 枚举类型的单例模式
zhb8015
单例模式
E.编写一个包含单个元素的枚举类型[极推荐]。代码如下:
public enum MaYun {himself; //定义一个枚举的元素,就代表MaYun的一个实例private String anotherField;MaYun() {//MaYun诞生要做的事情//这个方法也可以去掉。将构造时候需要做的事情放在instance赋值的时候:/** himself = MaYun() {*
- Kafka+Storm+HDFS
ssydxa219
storm
cd /myhome/usr/stormbin/storm nimbus &bin/storm supervisor &bin/storm ui &Kafka+Storm+HDFS整合实践kafka_2.9.2-0.8.1.1.tgzapache-storm-0.9.2-incubating.tar.gzKafka安装配置我们使用3台机器搭建Kafk
- Java获取本地服务器的IP
中华好儿孙
javaWeb获取服务器ip地址
System.out.println("getRequestURL:"+request.getRequestURL());
System.out.println("getLocalAddr:"+request.getLocalAddr());
System.out.println("getLocalPort:&quo