YARN/MRv2环境搭建

搭建环境:

1)hadoop版本:0.23.1

2)Linux版本:Linux version 2.6.18-164.el5

3)操作系统:Red Hat Enterprise Linux Server release 5.4

拓扑结构:

总共四台机器(A、B、C、D)

namenode:A、B

datanode:A、B、C、D

ResourceManager:B

NodeManager:A、B、C、D

步骤:

1、下载hadoop0.23.1源代码和JAR包

wget http://labs.renren.com/apache-mirror//hadoop/core/hadoop-0.23.1/hadoop-0.23.1-src.tar.gz

wget http://labs.renren.com/apache-mirror//hadoop/core/hadoop-0.23.1/hadoop-0.23.1.tar.gz

2、安装

tar -xvzf hadoop-0.23.0.tar.gz

3、安装相关工具

1)java



2)protobuf

wget http://protobuf.googlecode.com/files/protobuf-2.4.1.tar.gz
tar -zxvf protobuf-2.4.1.tar.gz
cd protobuf-2.4.1
./configure
make
sudo make install

3)ssh

 4、配置运行环境

vim ~/.bashrc
export HADOOP_DEV_HOME=/home/m2/hadoop-0.23.1
export HADOOP_MAPRED_HOME=${HADOOP_DEV_HOME}
export HADOOP_COMMON_HOME=${HADOOP_DEV_HOME}
export HADOOP_HDFS_HOME=${HADOOP_DEV_HOME}
export YARN_HOME=${HADOOP_DEV_HOME}
export HADOOP_CONF_DIR=${HADOOP_DEV_HOME}/conf
export HDFS_CONF_DIR=${HADOOP_DEV_HOME}/conf
export YARN_CONF_DIR=${HADOOP_DEV_HOME}/conf
export HADOOP_LOG_DIR=${HADOOP_DEV_HOME}/logs

 

 5、创建Hadoop配置文件

cd $HADOOP_DEV_HOME
mkdir conf
vim core-site.xml

core-site.xml

 

<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
<configuration>
  <property>
     <name>hadoop.tmp.dir</name>
     <value>/disk1/hadoop-0.23/tmp/</value>
     <description>A base for other temporary directories</description>
  </property>
 <property>
    <name>fs.defaultFS</name>
    <value>hdfs://A:9000</value>
    <description>The name of the default file system.  Either the
      literal string "local" or a host:port for NDFS.
    </description>
    <final>true</final>
 </property>
</configuration>
   

 hdfs-site.xml

 

<configuration>
  <property>
    <name>dfs.namenode.name.dir</name>
    <value>/disk12/hadoop-0.23/namenode</value>
  </property>
  <property>
    <name>dfs.federation.nameservices</name>
    <value>ns1,ns2</value>
  </property>
  <property>
    <name>dfs.namenode.rpc-address.ns1</name>
    <value>A:9000</value>
  </property>
  <property>
    <name>dfs.namenode.http-address.ns1</name>
    <value>A:23001</value>
  </property>
  <property>
    <name>dfs.namenode.secondary.http-address.ns1</name>
    <value>A:23002</value>
  </property>
  <property>
    <name>dfs.namenode.rpc-address.ns2</name>
    <value>B:9000</value>
  </property>
  <property>
    <name>dfs.namenode.http-address.ns2</name>
    <value>B:23001</value>
  </property>
  <property>
    <name>dfs.namenode.secondary.http-address.ns2</name>
    <value>B:23002</value>
  </property>
</configuration>
   

 

 mapred-site.xml

<configuration>
 <property>
  <name>mapreduce.framework.name</name>
  <value>yarn</value>
 </property>
</configuration>

 

 yarn-site.xml

<configuration>
  <property>
    <description>The address of the applications manager interface in the RM.</description>
    <name>yarn.resourcemanager.address</name>
      <value>C:18040</value>
  </property>
  <property>
    <description>The address of the scheduler interface.</description>
    <name>yarn.resourcemanager.scheduler.address</name>
      <value>C:18030</value>
  </property>
  <property>
    <description>The address of the RM web application.</description>
    <name>yarn.resourcemanager.webapp.address</name>
      <value>dw95.kgb.sqa.cm4:18088</value>
  </property>
  <property>
    <name>yarn.resourcemanager.resource-tracker.address</name>
    <value>C:18025</value>
  </property>
  <property>
    <description>The address of the RM admin interface.</description>
    <name>yarn.resourcemanager.admin.address</name>
       <value>C:18141</value>
  </property>
 <property>
    <name>yarn.nodemanager.aux-services</name>
    <value>mapreduce.shuffle</value>
</property>
</configuration>

slaves

A
B
C
D

 

hadoop-env.sh

cp $HADOOP_DEV_HOME/share/hadoop/common/templates/conf/hadoop-env.sh $HADOOP_DEV_HOME/conf/
vim hadoop-env.sh
export JAVA_HOME=

 

6、配置其他服务器

pscp slaves /home/m2/ -r /home/m2/
 

7、启动NameNode

ssh A
${HADOOP_DEV_HOME}/bin/hdfs namenode -format -clusterid test
ssh B
${HADOOP_DEV_HOME}/bin/hdfs namenode -format -clusterid test
${HADOOP_DEV_HOME}/sbin/start-dfs.sh

 8、启动ResourceManager

$HADOOP_DEV_HOME/sbin/start-yarn.sh

 

常见问题:

1)配置挂载多个本地目录,用逗号隔开

 hdfs.xml

<property>
 <name>dfs.datanode.data.dir</name>
 <value>/disk1/hadoop-0.23/data,/disk2/hadoop-0.23/data</value>
</property>

2)运行启动命令为出错,但实际上没有启动

 可能为端口被占用

netstat -anp 端口号
#-n 某些常用端口号显示为名称,该参数强制显示实际端口号
#-p 显示占用该端口的进程
px -aux | grep 进程号
kill -9 进程号

3)运行DistributeShell出错

出错原因为启动ApplicationMaster时未设置正确的CLASSPATH

修改办法:修改client.java文件或者打https://issues.apache.org/jira/browse/MAPREDUCE-3869这个patch

-    String classPathEnv = "${CLASSPATH}"
-        + ":./*"
-        + ":$HADOOP_CONF_DIR"
-        + ":$HADOOP_COMMON_HOME/share/hadoop/common/*"
-        + ":$HADOOP_COMMON_HOME/share/hadoop/common/lib/*"
-        + ":$HADOOP_HDFS_HOME/share/hadoop/hdfs/*"
-        + ":$HADOOP_HDFS_HOME/share/hadoop/hdfs/lib/*"
-        + ":$YARN_HOME/modules/*"
-        + ":$YARN_HOME/lib/*"
-        + ":./log4j.properties:";
+    StringBuilder classPathEnv = new StringBuilder("${CLASSPATH}:./*");
+    for (String c : conf.get(YarnConfiguration.YARN_APPLICATION_CLASSPATH)
+        .split(",")) {
+      classPathEnv.append(':');
+      classPathEnv.append(c.trim());
+    }
+    classPathEnv.append(":./log4j.properties");
 
-    // add the runtime classpath needed for tests to work 
+    // add the runtime classpath needed for tests to work
     String testRuntimeClassPath = Client.getTestRuntimeClasspath();
-    classPathEnv += ":" + testRuntimeClassPath; 
+    classPathEnv.append(':');
+    classPathEnv.append(testRuntimeClassPath);
 
-    env.put("CLASSPATH", classPathEnv);
+    env.put("CLASSPATH", classPathEnv.toString());
   

 

  

 

你可能感兴趣的:(yarn)