寻找“逆天”常量

  同事在研究LZ4 压缩算法时候给我发来了一段代码,看完了顿时表示非常震惊:

static const int[] MultiplyDeBruijnBitPosition = new int[32]
{
    0, 1, 28, 2, 29, 14, 24, 3, 30, 22, 20, 15, 25, 17, 4, 8,
    31, 27, 13, 23, 21, 19, 16, 7, 26, 12, 18, 6, 11, 5, 10, 9
};

/// <summary>
/// Find the number of trailing zeros in 32-bit.
/// </summary>
/// <param name="v"></param>
/// <returns></returns>
static int GetMultiplyDeBruijnBitPosition(uint v)
{
    return MultiplyDeBruijnBitPosition[((uint)((v & -v) * 0x077CB531U)) >> 27];
}

下面依次解释下这段代码的意思:

假设变量v=123456, 那么其二进制表示形式为(...)11110001001000000, -v 在计算机中的二进制表示形式为(...)00001110111000000, 所以(v & -v) == 1000000, 十进制表示形式为64。

(v & -v) * 0x077CB531 的意思是将常量0x077CB531 向左移位6位(左移6位相当于乘64)。

((uint)(v & -v) * 0x077CB5310) >> 27 位的意思是继续将上一步的结果向右移位27位,因为01串总长度是32位,向右移27位以后低位只剩下5个bits。

而0x077CB5310 的二进制表示形式为00000111011111001011010100110001, 所以上面的步骤相当于如下代码:

static int GetMultiplyDeBruijnBitPosition(uint v)
{
    return MultiplyDeBruijnBitPosition[27];
}

根据上面的常量数组,可知当v 等于123456时,其(v & -v) 的二进制表示行为末尾含有6个0。

这个算法的用处目前看主要有两种:

1. 快速计算log2(v & -v);

2. 任意给定两个32-bit 的整型数组,对其中的数据进行异或运算,得到的值v, 采用如上算法判断第几位是不同的,从而用于压缩算法。

 

  以上是关于这个常量的简要介绍,下面重点介绍下这个常量的特点:

1. 32-bit 长度;

2. 上一个5 bits 长度的01串的后四位是下一个01串的前四位,比如10001 的下一位是00010/00011;

3. 首尾是循环的;

根据以上3条规则,设计查找常量值算法代码如下:

using System;
using System.Collections.Generic;

namespace Test
{
    class Program
    {
        static List<string> deBruijnList = new List<string>();
        static List<string> deBruijnReserveList = new List<string>();
        static string[] flagArray = new string[] { "0", "1" };
        static readonly int DeBruijnLength = 5;
        static readonly double MaxDeBruijnListCount = Math.Pow(2, DeBruijnLength) - 4;
        static readonly uint ConstOne = 0x077CB531;
        static readonly uint ConstTwo = 0x0653ADF1;

        static void Init()
        {
            deBruijnReserveList.Add("00010");
            deBruijnReserveList.Add("00100");
            deBruijnReserveList.Add("01000");
            deBruijnReserveList.Add("10000");
        }

        static uint[] GetConstArray(uint constInt)
        {
            //uint constInt = 0x077CB531;
            uint[] constArray = new uint[32];
            uint j = 0;
            for (int i = 0; i < constArray.Length; i++)
            {
                j = (uint)((constInt << i)) >> 27;
                constArray[j] = (uint)i;
            }

            return constArray;
        }

        static const int[] MultiplyDeBruijnBitPosition = new int[32]
        {
            0, 1, 28, 2, 29, 14, 24, 3, 30, 22, 20, 15, 25, 17, 4, 8,
            31, 27, 13, 23, 21, 19, 16, 7, 26, 12, 18, 6, 11, 5, 10, 9
        };

        /// <summary>
        /// Find the number of trailing zeros in 32-bit.
        /// </summary>
        /// <param name="v"></param>
        /// <returns></returns>
        static int GetMultiplyDeBruijnBitPosition(uint v)
        {
            return MultiplyDeBruijnBitPosition[((uint)((v & -v) * 0x077CB531U)) >> 27];
        }

        static void GetDeBruijnKeyStr()
        {
            string deBruijnStr = "00000111011111001011010100110001";
            for (int i = 0; i < deBruijnStr.Length - DeBruijnLength; i++)
            {
                Console.WriteLine(deBruijnStr.Substring(i, DeBruijnLength));
            }
        }
        static void GetDeBruijnKey(string currentKey)
        {
            string currentKeysLast4ValueStr = currentKey.Substring(1);
            string nextKeyFormer4ValueStr = currentKeysLast4ValueStr;

            string nextKeyFlagZero = nextKeyFormer4ValueStr + "0";
            string nextKeyFlagOne = nextKeyFormer4ValueStr + "1";

            if (deBruijnList.Count == MaxDeBruijnListCount)
            {
                return;
            }
            else if (deBruijnList.Count > MaxDeBruijnListCount)
            {
                deBruijnList.Remove(currentKey);
                return;
            }

            if ((deBruijnList.Contains(nextKeyFlagZero) || deBruijnReserveList.Contains(nextKeyFlagZero))
                && (deBruijnList.Contains(nextKeyFlagOne) || deBruijnReserveList.Contains(nextKeyFlagOne)))
            {
                deBruijnList.Remove(currentKey);
                return;
            }

            if (!deBruijnList.Contains(nextKeyFlagZero) && !deBruijnReserveList.Contains(nextKeyFlagZero))
            {
                deBruijnList.Add(nextKeyFlagZero);
                GetDeBruijnKey(nextKeyFlagZero);
            }
            if (!deBruijnList.Contains(nextKeyFlagOne) && !deBruijnReserveList.Contains(nextKeyFlagOne))
            {
                deBruijnList.Add(nextKeyFlagOne);
                GetDeBruijnKey(nextKeyFlagOne);
            }

            //No new entry was added, so just remove the parent key.
            int lastIndexOfDeBruijnList = deBruijnList.Count - 1;
            if (deBruijnList[lastIndexOfDeBruijnList] == currentKey)
            {
                deBruijnList.Remove(currentKey);
            }
        }

        static void Main(string[] args)
        {
            Init();
            GetDeBruijnKey("00000");
            foreach (string deBruijnStr in deBruijnList)
            {
                Console.WriteLine(deBruijnStr);
            }
            Console.ReadLine();
        }
    }
}

最后得到的新的“逆天”常量值为0x0653ADF1U, 根据常量可以得到常量数组,算法如下:

//ConstOne = 0x077CB531;
//ConstOne = 0x0653ADF1;
static uint[] GetConstArray(uint constInt)
{
    //uint constInt = 0x077CB531;
    uint[] constArray = new uint[32];
    uint j = 0;
    for (int i = 0; i < constArray.Length; i++)
    {
        j = (uint)((constInt << i)) >> 27;
        constArray[j] = (uint)i;
    }

    return constArray;
}

新的常量数组如下:

static const int[] MultiplyDeBruijnBitPosition2 = new int[32]
{
    0, 1, 28, 2, 29, 7, 3, 12, 30, 10, 8, 17, 4, 19, 13, 22,
    31, 27, 6, 11, 9, 16, 18, 21, 26, 5, 15, 20, 25, 14, 24, 23
};

 

由此可知,“逆天”常量并不止一个,欢迎大家参与研究、讨论。

 

参考链接:http://www.matrix67.com/blog/archives/3985 

你可能感兴趣的:(常量)