数据结构之二叉树遍历

 最近学习了数据结构关于树的一些知识,发现很多的面试题考的都是树的非递归遍历,今天就总结了一下,代码如下所示:

  1 #include<iostream>
  2 #include<queue>
  3 #include<stack> 
  4 using namespace std;
  5 
  6 typedef char status;
  7 int index = 0; 
  8 status str[24] ="A#B#C#D##";//ABC##DE#G##F###   ABDH#K###E##CFI###G#J##   ABCD#####   四组测试数据
  9 typedef struct treeNode{
 10   status data;
 11   treeNode *lchild;
 12   treeNode *rchild; 
 13 }treeNode,*treelink;
 14 
 15 /*初始化树*/
 16 void Init(treelink *t){
 17 *t = NULL;
 18 }
 19 /*创建二叉树*/
 20 void Create_tree(treelink *t){
 21   status ch;
 22   ch = str[index++];
 23 
 24   if(ch=='#'){
 25     (*t) = NULL;
 26   }else{
 27     (*t) = (treelink)malloc(sizeof(treeNode));
 28     if(!*t)exit(0);
 29     (*t)->data = ch;
 30     Create_tree(&(*t)->lchild);
 31     Create_tree(&(*t)->rchild);
 32   }
 33 }
 34 
 35 /*前序遍历递归实现*/
 36 void Preordertraverse(treelink t){
 37   if(!t)return ;
 38     cout<<t->data;
 39   Preordertraverse(t->lchild);
 40   Preordertraverse(t->rchild);
 41 }
 42 /*前序遍历非递归实现*/
 43 void Preordertraverse1(treelink t){
 44   stack<treelink> s;
 45   treelink p;
 46   p = t;
 47   while(!s.empty() || p!= NULL){
 48     while(p!=NULL){
 49       cout<<p->data;
 50       s.push(p);
 51       p=p->lchild;
 52     }
 53     if(!s.empty()){
 54       p = s.top();
 55       s.pop();
 56       p = p->rchild; 
 57     }
 58   }
 59 }
 60 
 61 
 62 /*中序遍历递归实现*/
 63 void Inordertraverse(treelink t){
 64   if(!t)return ;
 65   Inordertraverse(t->lchild);
 66   cout<<t->data;
 67   Inordertraverse(t->rchild);
 68 }
 69 /*中序遍历非递归实现*/
 70 void Inordertraverse1(treelink t){
 71   stack<treelink> s;
 72   treelink p;
 73   p = t;
 74   while(!s.empty() || p!= NULL){
 75     while(p!=NULL){
 76       s.push(p);
 77       p=p->lchild;
 78     }
 79     if(!s.empty()){
 80       p = s.top();
 81       cout<<p->data;
 82       s.pop();
 83       p = p->rchild; 
 84     }
 85   }
 86 }
 87 
 88 /*后序遍历递归实现*/
 89 void Postordertraverse(treelink t){
 90   if(!t)return ;
 91   Postordertraverse(t->lchild);
 92   Postordertraverse(t->rchild);
 93   cout<<t->data;
 94 }
 95 /*后序遍历非递归实现*/
 96 void Postordertraverse1(treelink t){
 97   stack<treelink> s;
 98   treelink cur,pre = NULL;
 99   s.push(t);
100   while(!s.empty()){
101     cur = s.top();
102     if((cur->lchild == NULL && cur->rchild == NULL) || (pre!=NULL && (pre == cur->lchild || pre == cur->rchild))){
103       cout<<cur->data;
104       s.pop();
105       pre=cur;
106     }else{
107       if(cur->rchild != NULL){
108         s.push(cur->rchild);
109       }
110       if(cur->lchild != NULL){
111         s.push(cur->lchild);
112       } 
113     }
114   }
115 }
116 /*层次遍历非递归实现*/
117 void levelorder(treelink t){
118   queue<treelink> qu;
119   qu.push(t);
120   do{
121     treelink n = qu.front();
122     cout<<n->data;
123     qu.pop();
124     if(n->lchild!=NULL){
125       qu.push(n->lchild);
126     }
127     if(n->rchild!=NULL){
128       qu.push(n->rchild);
129     }
130   }while(!qu.empty());
131 }
132 /*分层打印*/
133 void level(treelink t){
134   queue<treelink> qu;
135   treelink m,n;
136   treelink p = (treelink)malloc(sizeof(treeNode));
137   p->data = '*'; 
138   qu.push(t);
139   qu.push(p);
140   do{
141     n = qu.front();
142     qu.pop();
143     if( n && n->data == '*'){
144       m = qu.back(); //可以使用qu.size()函数判断队里元素是否为1(*)如果是*的话就break 
145       if(n == m)break;
146       qu.push(p);
147       cout<<endl;
148       continue;
149     }else{
150       cout<<n->data;
151     }    
152     if(n->lchild != NULL){
153       qu.push(n->lchild);
154     }
155     if(n->rchild!=NULL){
156       qu.push(n->rchild);
157     }
158   }while(!qu.empty());
159 } 
160 
161 
162 /*求树的深度*/ 
163 int Tdepth(treelink t){
164   if(!t)return 0;
165   int ldepth = Tdepth(t->lchild);
166   int rdepth = Tdepth(t->rchild);
167   return 1 + max(ldepth,rdepth); 
168 }
169 /*递归实现求树指定层的节点*/
170 void printatlevel(treelink t,int level){
171   if(!t || level <0){
172     return ;
173   }
174   if(level == 0){
175     cout<<t->data;
176   }
177 
178   printatlevel(t->lchild,level - 1);
179   printatlevel(t->rchild,level - 1);
180 }
181 /*分层打印二叉树*/
182 void printbylevel(treelink t){
183   int i;
184   int level = Tdepth(t);
185   for(i = 0;i<level;i++){
186     printatlevel(t,i);
187     cout<<endl;
188   }
189 }
190 int main(){
191   treelink t;
192   Init(&t);
193   Create_tree(&t);    
194   cout<<endl;
195   Postordertraverse1(t);
196   /*
197   Preordertraverse(t);
198   cout<<endl;
199   Preordertraverse1(t);
200   cout<<endl;
201   Inordertraverse(t);
202   cout<<endl;
203   Inordertraverse1(t);
204   cout<<endl;
205   Postordertraverse(t);
206   cout<<endl;
207   Postordertraverse1(t);
208   cout<<endl;
209   levelorder(t);
210   cout<<endl;
211   printbylevel(t);
212   cout<<endl;
213   level(t);*/
214   return 0;
215 }

 

你可能感兴趣的:(数据结构)