Sorting an array can be done by swapping certain pairs of adjacent entries in the array. This is the fundamental technique used in the well-known bubble sort. If we list the identities of the pairs to be swapped, in the sequence they are to be swapped, we obtain what might be called a swap map. For example, suppose we wish to sort the array A whose elements are 3, 2, and 1 in that order. If the subscripts for this array are 1, 2, and 3, sorting the array can be accomplished by swapping A2 and A3, then swapping A1 and A2, and finally swapping A2 and A3. If a pair is identified in a swap map by indicating the subscript of the first element of the pair to be swapped, then this sorting process would be characterized with the swap map 2 1 2.
It is instructive to note that there may be many ways in which swapping of adjacent array entries can be used to sort an array. The previous array, containing 3 2 1, could also be sorted by swapping A1 and A2, then swapping A2 and A3, and finally swapping A1 and A2 again. The swap map that describes this sorting sequence is 1 2 1.
For a given array, how many different swap maps exist? A little thought will show that there are an infinite number of swap maps, since sequential swapping of an arbitrary pair of elements will not change the order of the elements. Thus the swap map 1 1 1 2 1 will also leave our array elements in ascending order. But how many swap maps of minimum size will place a given array in order? That is the question you are to answer in this problem.
The input data will contain an arbitrary number of test cases, followed by a single 0. Each test case will have a integer n that gives the size of an array, and will be followed by the n integer values in the array.
For each test case, print a message similar to those shown in the sample output below. In no test case willn be larger than 5.
2 9 7 2 12 50 3 3 2 1 3 9 1 5 0
There are 1 swap maps for input data set 1. There are 0 swap maps for input data set 2. There are 2 swap maps for input data set 3. There are 1 swap maps for input data set 4.
题意: 求通过交换相邻元素排序,求最少交换次数的方法有几种。
最少交换次数就是逆序对数,枚举交换方案即可。
另外,用冒泡排序的方法一定是交换次数最少的方案。
解法一: 枚举逆序对数减少的方案,到达有序序列的时候,就一定是最少交换次数的方案。 time: 0.015
#include<cstdio> #include<cstring> #include<iostream> #include<string> #include<algorithm> using namespace std; const int maxn = 10; int n; int a[maxn]; int ans; bool isorder() { for(int i=0;i<n-1;i++) if(a[i]>a[i+1]) return false; return true; } void dfs(int d) { if(isorder()) { ans++; return; } for(int i=0;i<n-1;i++) if(a[i]>a[i+1]) { swap(a[i], a[i+1]); dfs(d+1); swap(a[i], a[i+1]); } } int main() { #ifndef ONLINE_JUDGE freopen("./uva331.in", "r", stdin); #endif int kase=0; while(scanf("%d", &n)==1 && n) { for(int i=0;i<n;i++) scanf("%d", a+i); ans=0; if(!isorder()) dfs(0); printf("There are %d swap maps for input data set %d.\n", ans, ++kase); } return 0; }
解法二: 先求出逆序对数d,然后暴力枚举排序方案(控制深度为d),如果到达深度d时,序列变成有序序列,就找到一个最少交换次数的方案。 time: 0.059
#include<cstdio> #include<cstring> #include<iostream> #include<string> #include<algorithm> using namespace std; const int maxn=10; int n; int inv, a[maxn], ans; void dfs(int d) { if(d==inv) { for(int i=0;i<n-1;i++) if(a[i]>a[i+1]) return; ans++; } else for(int i=0;i<n-1;i++) { swap(a[i], a[i+1]); dfs(d+1); swap(a[i], a[i+1]); } } int main() { #ifndef ONLINE_JUDGE freopen("./uva331.in", "r", stdin); #endif int kase = 0; while(scanf("%d", &n) == 1 && n) { for(int i=0;i<n;i++) scanf("%d", &a[i]); inv=0; for(int i=0;i<n;i++) for(int j=i+1;j<n;j++) if(a[i]>a[j]) inv++; ans=0; if(inv > 0) dfs(0); printf("There are %d swap maps for input data set %d.\n", ans, ++kase); } return 0; }