Given a set of candidate numbers (C) and a target number (T), find all unique combinations in C where the candidate numbers sums to T.
The same repeated number may be chosen from C unlimited number of times.
Note:
For example, given candidate set 2,3,6,7
and target 7
,
A solution set is: [7]
[2, 2, 3]
[易错点]
1.递归终止条件不完整,当输入是:
[2], 1 即可能递归会一直进行下去导致栈溢出
2. line 29 的循环初始条件:
开始的写法是i每次递归时都是从0开始,在输入是[1,2], 3, 产生输出:[[1,1,1],[1,2],[2,1]]
正确的做法应该是从depth开始
1 public class Solution { 2 public ArrayList<ArrayList<Integer>> combinationSum(int[] candidates, int target) { 3 // Start typing your Java solution below 4 // DO NOT write main() function 5 ArrayList<ArrayList<Integer>> result = new ArrayList<ArrayList<Integer>>(); 6 int len = candidates.length, depth = 0; 7 if(len == 0){ 8 return result; 9 } 10 ArrayList<Integer> output = new ArrayList<Integer>(); 11 int sum = 0; 12 Arrays.sort(candidates); 13 generate(result, output, sum, depth, len, target, candidates); 14 return result; 15 } 16 17 public void generate(ArrayList<ArrayList<Integer>> result, ArrayList<Integer> output, int sum, 18 int depth, int len, int target, int[] candidates){ 19 if(sum > target){ 20 return; 21 } 22 if(sum == target){ 23 ArrayList<Integer> tmp = new ArrayList<Integer>(); 24 tmp.addAll(output); 25 result.add(tmp); 26 return; 27 } 28 29 for(int i = depth; i < len; i++){ 30 sum += candidates[i]; 31 output.add(candidates[i]); 32 generate(result, output, sum, i, len, target, candidates); 33 sum -= output.get(output.size() - 1); 34 output.remove(output.size() - 1); 35 } 36 } 37 }