[LeetCode] Validate Binary Search Tree 验证二叉搜索树

 

Given a binary tree, determine if it is a valid binary search tree (BST).

Assume a BST is defined as follows:

  • The left subtree of a node contains only nodes with keys less than the node's key.
  • The right subtree of a node contains only nodes with keys greater than the node's key.
  • Both the left and right subtrees must also be binary search trees.

confused what "{1,#,2,3}" means? > read more on how binary tree is serialized on OJ.

 

这道验证二叉搜索树有很多种解法,可以利用它本身的性质来做,即左<根<右,也可以通过利用中序遍历结果为有序数列来做,下面我们先来看最简单的一种,就是利用其本身性质来做,初始化时带入系统最大值和最小值,在递归过程中换成它们自己的节点值,用long代替int就是为了包括int的边界条件,代码如下:

解法一:

// Recursion without inorder traversal
class Solution {
public:
    bool isValidBST(TreeNode *root) {
        return isValidBST(root, LONG_MIN, LONG_MAX);
    }
    bool isValidBST(TreeNode *root, long mn, long mx) {
        if (!root) return true;
        if (root->val <= mn || root->val >= mx) return false;
        return isValidBST(root->left, mn, root->val) && isValidBST(root->right, root->val, mx);
    }
};

 

下面我们来看使用中序遍历来做,这种方法思路很直接,通过中序遍历将所有的节点值存到一个数组里,然后再来判断这个数组是不是有序的,代码如下:

解法二:

// Recursion
class Solution {
public:
    bool isValidBST(TreeNode *root) {
        if (!root) return true;
        vector<int> vals;
        inorder(root, vals);
        for (int i = 0; i < vals.size() - 1; ++i) {
            if (vals[i] >= vals[i + 1]) return false;
        }
        return true;
    }
    void inorder(TreeNode *root, vector<int> &vals) {
        if (!root) return;
        inorder(root->left, vals);
        vals.push_back(root->val);
        inorder(root->right, vals);
    }
};

 

下面这种解法跟上面那个很类似,都是用递归的中序遍历,但不同之处是不将遍历结果存入一个数组遍历完成再比较,而是每当遍历到一个新节点时和其上一个节点比较,如果不大于上一个节点那么则返回false,全部遍历完成后返回true。代码如下:

解法三:

// Still recursion
class Solution {
public:
    TreeNode *pre;
    bool isValidBST(TreeNode *root) {
        int res = 1;
        pre = NULL;
        inorder(root, res);
        if (res == 1) return true;
        else false;
    }
    void inorder(TreeNode *root, int &res) {
        if (!root) return;
        inorder(root->left, res);
        if (!pre) pre = root;
        else {
            if (root->val <= pre->val) res = 0;
            pre = root;
        }
        inorder(root->right, res);
    }
};

 

当然这道题也可以用非递归来做,需要用到栈,因为中序遍历可以非递归来实现,所以只要在其上面稍加改动便可,代码如下:

解法四:

// Non-recursion with stack
class Solution {
public:
    bool isValidBST(TreeNode *root) {
        if (!root) return true;
        stack<TreeNode*> s;
        TreeNode *p = root;
        TreeNode *pre = NULL;
        while (p || !s.empty()) {
            while (p) {
                s.push(p);
                p = p->left;
            }
            p = s.top();
            s.pop();
            if (!pre) pre = p;
            else {
                if (p->val <= pre->val) return false;
            }
            pre = p;
            p = p->right;
        }
        return true;
    }
};

 

最后还有一种方法,由于中序遍历还有非递归且无栈的实现方法,称之为Morris遍历,可以参考我之前的博客 Binary Tree Inorder Traversal 二叉树的中序遍历,这种实现方法虽然写起来比递归版本要复杂的多,但是好处在于是O(1)空间复杂度,但是我的实现方法在本机上测试都能通过,在OJ上测试却有Runtime error,我找来找去不知道问题在哪,不管了先贴上来,说不定能引起某位大神的注意,帮小弟改一改哈~

解法五

// Non-recursion without stack, I don't know why it cannot pass OJ, which show Runtime error. Can anyone help me fix it? Thanks!
class Solution {
public:
    bool isValidBST(TreeNode *root) {
        if (!root) return true;
        TreeNode *cur, *pre, *parent = NULL;
        cur = root;
        while (cur) {
            if (!cur->left) {
                if (parent && parent->val >= cur->val) return false;
                parent = cur;
                cur = cur->right;
            } else {
                pre = cur->left;
                while (pre->right && pre->right != cur) pre = pre->right;
                if (!pre->right) {
                    pre->right = cur;
                    cur = cur->left;
                } else {
                    pre->right = NULL;
                    if (parent->val >= cur->val) return false;
                    parent = cur;
                    cur = cur->right;
                }
            }
        }
        return true;
    }
};

 

LeetCode All in One 题目讲解汇总(持续更新中...)

你可能感兴趣的:(Binary search)