题意:给n个圆和m个三角形,且保证互不相交,用一个篱笆把他们围起来,求最短的周长是多少。
解法1:在每个圆上均匀的取2000个点,求凸包周长就可以水过。
解法2:求出所有圆之间的外公切线的切点,以及过三角形每个顶点的的直线和圆的切点,和三角形的三个顶点。这些点做凸包确定篱笆边上的图形。凸包的边和圆弧之和即为所求。求圆弧长度的时候要判断是优弧还是劣弧。用叉积判断两个向量的方向关系即可。
//Time:218MS //Memory:860K include <cstdio> #include <cstring> #include <cmath> #include <algorithm> #include <iostream> using namespace std; const double EPS = 1e-10; const double PI = acos(-1.0); const int MAXN = 55; int dcmp(double x) { if(fabs(x)<EPS) return 0; return x<0? -1:1; } double sqr(double x) { return x*x; } struct Point{ double x,y; bool tp; int id; Point(){} Point(double a,double b):x(a),y(b){} Point operator +(const Point &a)const{return Point(x+a.x,y+a.y);} Point operator -(const Point &a)const{return Point(x-a.x,y-a.y);} Point operator *(double k) const{return Point(x*k,y*k);} Point operator /(double k) const{return Point(x/k,y/k);} bool operator <(const Point &a)const { return dcmp(x-a.x)<0||(dcmp(x-a.x)==0&&dcmp(y-a.y)<0); } bool operator ==(const Point &a)const { return dcmp(x-a.x)==0&&dcmp(y-a.y)==0; } Point trunc(double d) { double dist(Point ,Point); double len = dist(*this,Point(0,0)); return Point(x*d/len,y*d/len); } Point rotate(double a) { return Point(x*cos(a)-y*sin(a),y*cos(a)+x*sin(a)); } void input(){scanf("%lf%lf",&x,&y);} }; struct Circle{ Point o; double r; Circle(){} Circle(Point a,double b):o(a),r(b){} double area(){return sqr(r)*PI;} double len(double ang){return r*ang;} }; struct Tri{ Point p[3]; }; typedef Point Vector; double cross(Vector a,Vector b) { return a.x*b.y-a.y*b.x; } double dot(Vector a,Vector b) { return a.x*b.x+a.y*b.y; } double length(Vector a) { return sqrt(dot(a,a)); } double dist(Point a,Point b) { return length(a-b); } double v_angle(Vector a,Vector b) { return acos(dot(a,b)/length(a)/length(b)); } int ConvexHull(Point *p, int n, Point *ch) { sort(p, p+n); n = unique(p, p+n) - p; int m = 0; for(int i = 0; i < n; i++) { while(m > 1 && dcmp(cross(ch[m-1]-ch[m-2], p[i]-ch[m-2])) <= 0) m--; ch[m++] = p[i]; } int k = m; for(int i = n-2; i >= 0; i--) { while(m > k && dcmp(cross(ch[m-1]-ch[m-2], p[i]-ch[m-2])) <= 0) m--; ch[m++] = p[i]; } if(n > 1) m--; return m; } Vector rotate(Vector a,double rad) { Vector c; c.x = a.x*cos(rad)-a.y*sin(rad); c.y = a.x*sin(rad)+a.y*cos(rad); return c; } void get_ocmt(Circle c1,Circle c2,Point &s1, Point &e1,Point &s2,Point &e2) { double l = dist(c1.o,c2.o); double d = fabs(c1.r-c2.r); double theta = acos(d/l); //if(dcmp(c1.r-c2.r)>0) swap(c1,c2); Vector vec = c1.o-c2.o; vec = vec.trunc(c1.r); s1 = c1.o+rotate(vec,theta); s2 = c1.o+vec.rotate(-theta); vec = vec.trunc(c2.r); e1 = c2.o+vec.rotate(theta); e2 = c2.o+vec.rotate(-theta); } void get_pc(Circle c, Point p,Point &s1,Point &s2) { Vector u = p-c.o; double dist = length(u); Point v = c.o+u/dist*c.r; double ang = PI/2-asin(c.r/dist); s1 = rotate(v-c.o,-ang)+c.o; s2 = rotate(v-c.o,ang)+c.o; } Point p[55*55*55],ch[55*55*55]; int main() { //freopen("/home/qitaishui/code/in.txt","r",stdin); int n,m,pn,chn; Circle c[MAXN]; Tri tri[MAXN]; while(scanf("%d%d",&n,&m)!=EOF) { for(int i = 0; i < n;i++) { c[i].o.input(); scanf("%lf",&c[i].r); } if(n==1&&m==0) { printf("%.6f\n",c[0].len(2*PI)); continue; } for(int i = 0; i < m; i++) for(int j = 0; j < 3; j++) tri[i].p[j].input(); pn = 0; for(int i = 0; i < n; i++) for(int j = i+1; j < n; j++) { if(dcmp(c[i].r-c[j].r)>0) get_ocmt(c[j],c[i],p[pn+1],p[pn],p[pn+3],p[pn+2]); else get_ocmt(c[i],c[j],p[pn],p[pn+1],p[pn+2],p[pn+3]); p[pn].tp = 0,p[pn].id = i; p[pn+1].tp = 0,p[pn+1].id = j; p[pn+2].tp = 0,p[pn+2].id = i; p[pn+3].tp = 0,p[pn+3].id = j; pn+=4; } for(int i = 0; i < n; i++) for(int j = 0; j < m; j++) for(int k = 0; k <3; k++) { get_pc(c[i],tri[j].p[k],p[pn],p[pn+1]); p[pn].tp = 0,p[pn].id = i; p[pn+1].tp = 0,p[pn+1].id = i; pn+=2; } for(int j = 0; j < m; j++) for(int k = 0; k <3; k++) { p[pn] = tri[j].p[k]; p[pn].tp = 1, p[pn].id = j; pn++; } chn = ConvexHull(p,pn,ch); //cout<<chn<<endl; int top=0; bool flag = 0; double ans = 0,cir=0; for(int i = 0; i <chn; i++) { if(ch[i].tp==0&&ch[(i+1)%chn].tp==0&&ch[i].id==ch[(i+1)%chn].id) { int tmp=ch[i].id; double ang; ang = v_angle(ch[i]-c[tmp].o,ch[(i+1)%chn]-c[tmp].o); if(dcmp(cross(ch[i]-c[tmp].o,ch[(i+1)%chn]-c[tmp].o))<0) ang = 2*PI-ang; ans=ans+c[tmp].len(ang); } else ans+=length(ch[i]-ch[(i+1)%chn]); } printf("%.6f\n",ans); } return 0; }