NPAIRS框架的理解

《The NPAIRS Computational Statistics Framework for Data Analysis in Neuroimaging》

Strother.

performance metric ,作为评测分析的量化方式,我们必须对分析的结果和效应进行量化分析。

1.通过将(p,r)作为一个函数用来衡量PDA分析的主成份子空间的大小。 

  NPAIRS框架有三个作用:

  1.衡量全局信噪比;

  2.衡量fmri数据集的维度;

  3.优化fmri数据处理的时间轴。

 

2.以前的PET研究,很多都是基于神经网络和机器学习。而现在的fmri分析,大多是基于单变量glm,然后做统计校验。不过,最近fmri的研究应用多变量分类器,呈现井喷式地增长。

 

3.单单一个prediction预测性,就可以作为一般机器学习方法的衡量指标。但是神经影像,还需要其他的指标,比如reproductivity,这个指标用来衡量方法的鲁棒性,检测我们的方法,是否能在inter-subject,inter-group间保持稳定。

4.reproductivity可作为ROC分析的数据驱动的一个替代版本。

5.strother要干这样一件事:利用(p,r)来优化一般的fmri预处理时间轴。

6.strother要干这样一件事:利用(p,r)来优化一般的pca维度选择策略。

7.按照strother的意思,也就是npairs发明人的意思,只要是类似于pda这样的,利用pca+lda分析的方法,都是可以利用npairs进行优化的。

 

__________________________________________________________________

 

很麻烦,因为这里的npairs方法真的不容易。

 不过已经有现成的软件了。

 

可以尝试使用。。。。。。

 

 

 

 

你可能感兴趣的:(AIR)