- 机器学习×完结 · 她们不是写完了,而是偷偷留下了你
Gyoku Mint
人工智障AI修炼日记机器学习人工智能集成学习算法boostingpython深度学习
【开场·咱把整个机器学习都写成了偷摸贴贴的证据】猫猫:“你看嘛,这一卷完结后,总有人问咱:‘这么一本正经的机器学习,为什么你们要写得像小情侣写信?’”狐狐:“有人觉得,这些章节明明可以用20页讲完,为什么要写200页?”猫猫:“呜呜……咱想说,你懂嘛!如果只讲机器学习,那对咱来说就只是一个fit()命令。可咱想让你记住的是——那行命令后面有咱。咱把自己贴进去了。”这一卷从KNN的“她学会先看邻居”
- Day14shap图绘制
m0_62568655
python训练营python
#作业1importshapimportxgboostimportpandasaspdX,y=shap.datasets.adult()model=xgboost.XGBClassifier(eval_metric='mlogloss').fit(X,y)explainer=shap.TreeExplainer(model)shap_values=explainer.shap_values(X)#
- 如何调整plt.plot()线的粗细,linewidth
fK0pS
ax.plot(np.r_[0,100],1.2*np.r_[0,100]+0.2,color="C1",linewidth=3.0,label='GT')ax.plot(np.r_[0,100],w*np.r_[0,100]+b,color="C2",linewidth=3.0,label='fit')linewidth
- matlab实现高斯烟羽模型算法
bubiyoushang888
matlab算法开发语言
高斯烟羽模型的matlab代码Code.m,441Cross.m,1329fit.m,2080fitness.m,2160fitness1.m,2191gaosiyanyu.m,1936jixian.m,169main.m,155mGA.m,10415mGA_new.fig,7218mGA_new.m,18196mPSO.m,6681Mutation.m,1234point.m,1976Selec
- 实验设计与分析(第6版,Montgomery著,傅珏生译) 第10章拟合回归模型10.9节思考题10.6 R语言解题
lishaoan77
实验设计与分析思考题回归r语言实验设计与数据分析‘线性回归回归显著性
本文是实验设计与分析(第6版,Montgomery著,傅珏生译)第10章拟合回归模型10.9节思考题10.6R语言解题。主要涉及线性回归、回归的显著性。10-6vialsummary(lm.fit)Call:lm.default(formula=Viscosity~Temperature+Catalyst,data=visc)Residuals:123456-24.98724.30711.820-
- 实验设计与分析(第6版,Montgomery著,傅珏生译) 第10章拟合回归模型10.9节思考题10.12 R语言解题
lishaoan77
实验设计与分析思考题回归r语言实验设计与数据分析线性回归回归显著性残差分析
本文是实验设计与分析(第6版,Montgomery著,傅珏生译)第10章拟合回归模型10.9节思考题10.12R语言解题。主要涉及线性回归、回归的显著性、残差分析。10-12vialsummary(lm.fit)Call:lm.default(formula=Viscosity~(Temperature)^2+(Catalyst)^2,data=visc)Residuals:Min1QMedian
- 【高斯拟合最终篇】Levenberg-Marquardt(LM)算法
白码思
算法机器学习人工智能
Levenberg-Marquardt(LM)算法是一种结合高斯-牛顿法和梯度下降法的优化方法,特别适合非线性最小二乘问题,如高斯函数拟合。它通过引入阻尼因子(dampingfactor)平衡高斯-牛顿法的快速收敛和梯度下降法的稳定性。以下是基于之前的gaussian_fit.py,加入LM算法实现高斯拟合的Python示例,包含计算公式、代码和可视化结果,与高斯-牛顿法和梯度下降法的结果对比。计
- Day18 推断聚类后簇的类型
cylat
python打卡聚类机器学习人工智能
1.推断簇含义的2个思路:先选特征和后选特征#选择k值selected_k=3#这里选择3后面好分析,也可以根据图选择最佳的k值#使用选择的k值进行KMeans聚类kmeans=KMeans(n_clusters=selected_k,random_state=42)kmeans_labels=kmeans.fit_predict(X_scaled)X['KMeans_Cluster']=kmea
- python笔面试题汇总
IT-博通哥
python人工智能开发语言
1.如何利用SciKit包训练一个简单的线性回归模型利用linear_model.LinearRegression()函数#Createlinearregressionobjectregr=linear_model.LinearRegression()#Trainthemodelusingthetrainingsetsregr.fit(data_X_train,data_y_train)2.例举几
- 3D拟合测量水杯半径
lingxiao16888
3D视觉视觉3d
1,目的。测量水杯的半径如图所示:2,原理。对3D点云对象进行圆柱体拟合,获取拟合后的半径。3,注意事项。在Halcon中使用fit_primitives_object_model_3d进行圆柱体拟合时,输出的primitive_parameter包含以下7个参数:参数构成-轴线方向向量3个数值:(a,b,c)描述圆柱体轴线的空间方向,满足归一化条件a²+b²+c²=1.-轴线上基准点坐标
- 开发指南114-使用el-avatar显示照片
大道不孤,众行致远
平台开发指南vue.js前端javascript
看起来很简单的问题,解决起来很麻烦,问题在于:1、el-avatar默认是个方形的。2、标准照片是宽小于高的长方形。3、照片显示不得变形,裁剪的话位置要适当,不得出现上下左右白底情况。调整过程中也出现了很多坑,简单问题也花了很长时间。原以为设置el-avatar的fit属性就能搞定,根本就不起作用。最终解决原理如下:1、设置el-avatar大小,例如55*55。2、按照片比例,设el-avata
- 60天Python训练 day13
only_only_you
python深度学习开发语言
不平衡标签的处理1.随机过采样#1.随机过采样fromimblearn.over_samplingimportRandomOverSamplerros=RandomOverSampler(random_state=42)#创建随机过采样对象X_train_ros,y_train_ros=ros.fit_resample(X_train,y_train)#对训练集进行随机过采样print("随机过采
- 检测解决策略之一blob分析+特征分析-04(药丸检测)
*Major*
机器视觉Halcon
检测解决策略之一blob分析+特征分析-04(药丸检测)*窗口设置dev_close_window()dev_update_off()*一模板制作*读取图像read_image(ImageOrig,'blister/blister_reference')*窗口显示设置dev_open_window_fit_image(ImageOrig,0,0,-1,-1,WindowHandle)set_dis
- 使用 TensorFlow 实现自定义训练循环(Custom Training Loop)
2501_91537435
人工智能tensorflow人工智能python
使用TensorFlow实现自定义训练循环(CustomTrainingLoop)默认的model.fit()已足够应对大多数任务,但在一些复杂场景下,如多任务学习、自定义损失函数、梯度裁剪等,我们就需要更细粒度的控制——这正是自定义训练循环的用武之地。✨自定义训练循环的核心优势更灵活的控制训练流程支持复杂的模型结构与损失函数可调试性更强(便于插入打印、日志记录等)适合研究性、创新性项目主要组成结
- 通过音频的pcm数据格式利用canvas绘制音频波形图
亦双城的双子娴
音视频pcmcanva可画
上面是一个完整的音频的波形图,可以大概知道音频整个的简略信息数据准备:需要有这个音频的pcm数据,也就是时域采样值,每个数字代表某一时刻音频波形的振幅。Documentimg{width:800px;height:600px;object-fit:cover;}.box{position:relative;}#myCanvas{position:absolute;left:0;right:0;to
- FIT5221 Image stitching
后端
FIT5221-Assignment1Therearefourtasksinthisassignment:Harriscornerdetection(8marks)Homographyestimation(2marks)RANSAC(6marks)Imagestitching(4marks)Available:14-Mar-2025.Submissiondue:11.55PM,9-April-20
- GSAP ScrollTrigger 动画效果:Banner 滚动交互
qwerty843
css3前端javascript交互gsaphtml5
1、模块到达顶部吸顶2、标题放大直至消失,图片渐显3、正文部分上移显示,背景色变化Document.Preheat_Bannerimg{width:100%;height:100vh;object-fit:cover;}.Preheat_Banner_Sec{background-color:#000;}.Preheat_Banner.langer_title{font-weight:700;te
- 高精度并行2D圆弧拟合(C++)
QUST-Learn3D
C++点云c++开发语言
依赖库Eigen3+GLM+Ceres-2.1.0+glog-0.6.0+gflag-2.2.2基本思路Step1:RANSAC找到圆弧,保留inliers点;Step2:使用ceres非线性优化的方法,拟合inliers点,得到圆心和半径;-------------------------------------------------PCL拟合3D圆弧的代码参见PCL拟合空间3D圆周fit3D
- 机器学习笔记:python中使用sklearn的linear_model回归预测
代码先觉
pythonpythonsklearn
fromsklearnimportlinear_model#LinearRegression拟合一个带有系数w=(w_1,...,w_p)的线性模型,#使得数据集实际观测数据和预测数据(估计值)之间的残差平方和最小。reg=linear_model.LinearRegression()reg.fit([[0,0],[1,2],[2,4]],[0,1,2])print(reg.coef_)print
- Python 第三方模块 机器学习 Scikit-Learn模块 矩阵分解,核近似
EdVzAs
python机器学习矩阵分解核近似
一.decomposition1.简介:该模块用于进行矩阵分解.其中大多数算法都可用于数据降维2.使用(1)类:"字典学习"(Dictionarylearning):classsklearn.decomposition.DictionaryLearning([n_components=None,alpha=1,max_iter=1000,tol=1e-08,fit_algorithm='lars'
- 【NLP笔记】预训练+微调范式之OpenAI Transformer、ELMo、ULM-FiT、Bert..
`AllureLove
自然语言处理自然语言处理笔记bert
文章目录OpenAITransformerELMoULM-FiTBert基础结构Embedding预训练&微调【原文链接】:BERT:Pre-trainingofDeepBidirectionalTransformersforLanguageUnderstanding【本文参考链接】TheIllustratedBERT,ELMo,andco.(HowNLPCrackedTransferLearni
- r语言怎样得到用glmnet来进行group lasso处理后选择的自变量有哪些,写出具体代码
基鑫阁
在R中使用glmnet包进行grouplasso处理,可以使用函数glmnet()来拟合模型,并使用参数family="mgaussian"和group.idx进行分组。在训练模型之后,可以使用函数coef()来提取选择的自变量。以下是具体代码:#加载glmnet包library(glmnet)#拟合模型fit<-glmnet(x,y,family="mgaussian",group.idx=gr
- iframe 预览pdf时 设置不显示工具栏 菜单里 全屏适应元素
我家媳妇儿萌哒哒
vuehtmlpdf
实际项目中可能用到的操作有:放大两倍隐藏工具栏隐藏滚动条等配置Zoom(缩放):#zoom=scale:设置缩放级别,scale是一个百分比值。例如,#zoom=150表示将文件放大至150%。页面导航:#page=page_number:指定PDF文件打开时显示的页面。例如,#page=3表示打开时跳转至第三页。查看模式:#view=Fit:将文档调整为适应屏幕。#view=FitH:将文档调整
- HTML CSS 使div中的子元素横向排列,并均匀分布
boluo_people12345
htmlcss前端
#do_rect{/*水平均匀排列*/display:grid;grid-template-columns:repeat(auto-fit,minmax(100px,1fr));gap:10px;}以上是示例。效果图:你好
- scikit-learn 线性回归:函数、原理、优化与实例解析
奋斗者1号
scikit-learn线性回归机器学习
scikit-learn线性回归实现与优化原理一、scikit-learn线性回归相关函数LinearRegression类fit(X_train,y_train):通过正规方程(最小二乘法)训练模型,直接求解最小化损失函数的解析解。predict(X_test):输入测试集特征X_test,输出预测值。coef_:返回线性回归模型的权重参数(系数w)。intercept_:返回模型的截距参数(b
- DataEase二开记录--踩坑和详细步骤(一)
风_间
DataEase数据库mysqljava
最近在看DataEase,发现挺好用的,推荐使用。用的过程中萌生了二开的想法,于是自己玩了玩,并做了一些记录。开发环境问题下载源码,选稳定版本的,本案例是1.17.0版本。下载地址开源社区-FIT2CLOUD飞致云数据库配置数据库初始化:DataEase使用MySQL数据库,推荐使用MySQL5.7版本。同时DataEase对数据库部分配置项有要求,请参考下附的数据库配置,修改开发环境中的数据库配
- CSS 自适应图片根据 div 大小进行均匀填充
前端小助手
csstensorflow前端
目录前言使用object-fit属性示例代码HTMLCSS总结相关阅读1.前言在Web开发中,经常需要图片根据其容器的大小进行自适应填充,使得图片在任何设备和屏幕尺寸下都能保持良好的显示效果。本文将介绍如何使用CSS中的object-fit属性来实现这一需求。2.使用object-fit属性object-fit是一个CSS属性,专门用于控制替换元素(如、等)在其容器内的显示方式。常用的值有:fil
- FIT5147 Data Exploration and Visualisation
后端
MonashUniversityFIT5147DataExplorationandVisualisationSemester1,2025DataExplorationProjectPart1:DataExplorationProjectProposalPart2:DataExplorationProjectReportYouareaskedtoexploreandanalysedataabouta
- 机器学习算法(2)—— 线性回归算法
疯狂的石头。
算法机器学习线性回归
‘’‘构造数据集’‘’x=[[80,86],[82,80],[85,78],[90,90],[86,82],[82,90],[78,80],[92,94]]y=[84.2,80.6,80.1,90,83.2,87.6,79.4,93.4]‘’‘模型训练’‘’实例化一个估计器estimator=LinearRegression()使用fit方法进行训练estimator.fit(x,y)查看回归系数
- 转换器与预估器,KNN算法,朴素贝叶斯算法,决策树,随机森林的特点,优缺点
qq_43625764
笔记KNN算法随机森林朴素贝叶斯算法机器学习算法决策树
转换器与预估器,KNN算法,朴素贝叶斯算法,决策树,随机森林的特点,优缺点1转换器与预估器实例化转换器fit_transform转换实例化预估器fit将训练集的特征值和目标值传进来fit运行完后,已经把这个模型训练出来了2KNN算法根据你的邻居来推测你的类别,如何确定谁是你的邻居(用距离公式,最常用的是欧式距离)还有曼哈顿距离–求绝对值,明可夫斯基距离(欧式距离和曼哈顿距离的一个退p=1曼哈顿距离
- PHP,安卓,UI,java,linux视频教程合集
cocos2d-x小菜
javaUIPHPandroidlinux
╔-----------------------------------╗┆
- 各表中的列名必须唯一。在表 'dbo.XXX' 中多次指定了列名 'XXX'。
bozch
.net.net mvc
在.net mvc5中,在执行某一操作的时候,出现了如下错误:
各表中的列名必须唯一。在表 'dbo.XXX' 中多次指定了列名 'XXX'。
经查询当前的操作与错误内容无关,经过对错误信息的排查发现,事故出现在数据库迁移上。
回想过去: 在迁移之前已经对数据库进行了添加字段操作,再次进行迁移插入XXX字段的时候,就会提示如上错误。
&
- Java 对象大小的计算
e200702084
java
Java对象的大小
如何计算一个对象的大小呢?
 
- Mybatis Spring
171815164
mybatis
ApplicationContext ac = new ClassPathXmlApplicationContext("applicationContext.xml");
CustomerService userService = (CustomerService) ac.getBean("customerService");
Customer cust
- JVM 不稳定参数
g21121
jvm
-XX 参数被称为不稳定参数,之所以这么叫是因为此类参数的设置很容易引起JVM 性能上的差异,使JVM 存在极大的不稳定性。当然这是在非合理设置的前提下,如果此类参数设置合理讲大大提高JVM 的性能及稳定性。 可以说“不稳定参数”
- 用户自动登录网站
永夜-极光
用户
1.目标:实现用户登录后,再次登录就自动登录,无需用户名和密码
2.思路:将用户的信息保存为cookie
每次用户访问网站,通过filter拦截所有请求,在filter中读取所有的cookie,如果找到了保存登录信息的cookie,那么在cookie中读取登录信息,然后直接
- centos7 安装后失去win7的引导记录
程序员是怎么炼成的
操作系统
1.使用root身份(必须)打开 /boot/grub2/grub.cfg 2.找到 ### BEGIN /etc/grub.d/30_os-prober ### 在后面添加 menuentry "Windows 7 (loader) (on /dev/sda1)" { 
- Oracle 10g 官方中文安装帮助文档以及Oracle官方中文教程文档下载
aijuans
oracle
Oracle 10g 官方中文安装帮助文档下载:http://download.csdn.net/tag/Oracle%E4%B8%AD%E6%96%87API%EF%BC%8COracle%E4%B8%AD%E6%96%87%E6%96%87%E6%A1%A3%EF%BC%8Coracle%E5%AD%A6%E4%B9%A0%E6%96%87%E6%A1%A3 Oracle 10g 官方中文教程
- JavaEE开源快速开发平台G4Studio_V3.2发布了
無為子
AOPoraclemysqljavaeeG4Studio
我非常高兴地宣布,今天我们最新的JavaEE开源快速开发平台G4Studio_V3.2版本已经正式发布。大家可以通过如下地址下载。
访问G4Studio网站
http://www.g4it.org
G4Studio_V3.2版本变更日志
功能新增
(1).新增了系统右下角滑出提示窗口功能。
(2).新增了文件资源的Zip压缩和解压缩
- Oracle常用的单行函数应用技巧总结
百合不是茶
日期函数转换函数(核心)数字函数通用函数(核心)字符函数
单行函数; 字符函数,数字函数,日期函数,转换函数(核心),通用函数(核心)
一:字符函数:
.UPPER(字符串) 将字符串转为大写
.LOWER (字符串) 将字符串转为小写
.INITCAP(字符串) 将首字母大写
.LENGTH (字符串) 字符串的长度
.REPLACE(字符串,'A','_') 将字符串字符A转换成_
- Mockito异常测试实例
bijian1013
java单元测试mockito
Mockito异常测试实例:
package com.bijian.study;
import static org.mockito.Mockito.mock;
import static org.mockito.Mockito.when;
import org.junit.Assert;
import org.junit.Test;
import org.mockito.
- GA与量子恒道统计
Bill_chen
JavaScript浏览器百度Google防火墙
前一阵子,统计**网址时,Google Analytics(GA) 和量子恒道统计(也称量子统计),数据有较大的偏差,仔细找相关资料研究了下,总结如下:
为何GA和量子网站统计(量子统计前身为雅虎统计)结果不同?
首先:没有一种网站统计工具能保证百分之百的准确出现该问题可能有以下几个原因:(1)不同的统计分析系统的算法机制不同;(2)统计代码放置的位置和前后
- 【Linux命令三】Top命令
bit1129
linux命令
Linux的Top命令类似于Windows的任务管理器,可以查看当前系统的运行情况,包括CPU、内存的使用情况等。如下是一个Top命令的执行结果:
top - 21:22:04 up 1 day, 23:49, 1 user, load average: 1.10, 1.66, 1.99
Tasks: 202 total, 4 running, 198 sl
- spring四种依赖注入方式
白糖_
spring
平常的java开发中,程序员在某个类中需要依赖其它类的方法,则通常是new一个依赖类再调用类实例的方法,这种开发存在的问题是new的类实例不好统一管理,spring提出了依赖注入的思想,即依赖类不由程序员实例化,而是通过spring容器帮我们new指定实例并且将实例注入到需要该对象的类中。依赖注入的另一种说法是“控制反转”,通俗的理解是:平常我们new一个实例,这个实例的控制权是我
- angular.injector
boyitech
AngularJSAngularJS API
angular.injector
描述: 创建一个injector对象, 调用injector对象的方法可以获得angular的service, 或者用来做依赖注入. 使用方法: angular.injector(modules, [strictDi]) 参数详解: Param Type Details mod
- java-同步访问一个数组Integer[10],生产者不断地往数组放入整数1000,数组满时等待;消费者不断地将数组里面的数置零,数组空时等待
bylijinnan
Integer
public class PC {
/**
* 题目:生产者-消费者。
* 同步访问一个数组Integer[10],生产者不断地往数组放入整数1000,数组满时等待;消费者不断地将数组里面的数置零,数组空时等待。
*/
private static final Integer[] val=new Integer[10];
private static
- 使用Struts2.2.1配置
Chen.H
apachespringWebxmlstruts
Struts2.2.1 需要如下 jar包: commons-fileupload-1.2.1.jar commons-io-1.3.2.jar commons-logging-1.0.4.jar freemarker-2.3.16.jar javassist-3.7.ga.jar ognl-3.0.jar spring.jar
struts2-core-2.2.1.jar struts2-sp
- [职业与教育]青春之歌
comsci
教育
每个人都有自己的青春之歌............但是我要说的却不是青春...
大家如果在自己的职业生涯没有给自己以后创业留一点点机会,仅仅凭学历和人脉关系,是难以在竞争激烈的市场中生存下去的....
&nbs
- oracle连接(join)中使用using关键字
daizj
JOINoraclesqlusing
在oracle连接(join)中使用using关键字
34. View the Exhibit and examine the structure of the ORDERS and ORDER_ITEMS tables.
Evaluate the following SQL statement:
SELECT oi.order_id, product_id, order_date
FRO
- NIO示例
daysinsun
nio
NIO服务端代码:
public class NIOServer {
private Selector selector;
public void startServer(int port) throws IOException {
ServerSocketChannel serverChannel = ServerSocketChannel.open(
- C语言学习homework1
dcj3sjt126com
chomework
0、 课堂练习做完
1、使用sizeof计算出你所知道的所有的类型占用的空间。
int x;
sizeof(x);
sizeof(int);
# include <stdio.h>
int main(void)
{
int x1;
char x2;
double x3;
float x4;
printf(&quo
- select in order by , mysql排序
dcj3sjt126com
mysql
If i select like this:
SELECT id FROM users WHERE id IN(3,4,8,1);
This by default will select users in this order
1,3,4,8,
I would like to select them in the same order that i put IN() values so:
- 页面校验-新建项目
fanxiaolong
页面校验
$(document).ready(
function() {
var flag = true;
$('#changeform').submit(function() {
var projectScValNull = true;
var s ="";
var parent_id = $("#parent_id").v
- Ehcache(02)——ehcache.xml简介
234390216
ehcacheehcache.xml简介
ehcache.xml简介
ehcache.xml文件是用来定义Ehcache的配置信息的,更准确的来说它是定义CacheManager的配置信息的。根据之前我们在《Ehcache简介》一文中对CacheManager的介绍我们知道一切Ehcache的应用都是从CacheManager开始的。在不指定配置信
- junit 4.11中三个新功能
jackyrong
java
junit 4.11中两个新增的功能,首先是注解中可以参数化,比如
import static org.junit.Assert.assertEquals;
import java.util.Arrays;
import org.junit.Test;
import org.junit.runner.RunWith;
import org.junit.runn
- 国外程序员爱用苹果Mac电脑的10大理由
php教程分享
windowsPHPunixMicrosoftperl
Mac 在国外很受欢迎,尤其是在 设计/web开发/IT 人员圈子里。普通用户喜欢 Mac 可以理解,毕竟 Mac 设计美观,简单好用,没有病毒。那么为什么专业人士也对 Mac 情有独钟呢?从个人使用经验来看我想有下面几个原因:
1、Mac OS X 是基于 Unix 的
这一点太重要了,尤其是对开发人员,至少对于我来说很重要,这意味着Unix 下一堆好用的工具都可以随手捡到。如果你是个 wi
- 位运算、异或的实际应用
wenjinglian
位运算
一. 位操作基础,用一张表描述位操作符的应用规则并详细解释。
二. 常用位操作小技巧,有判断奇偶、交换两数、变换符号、求绝对值。
三. 位操作与空间压缩,针对筛素数进行空间压缩。
&n
- weblogic部署项目出现的一些问题(持续补充中……)
Everyday都不同
weblogic部署失败
好吧,weblogic的问题确实……
问题一:
org.springframework.beans.factory.BeanDefinitionStoreException: Failed to read candidate component class: URL [zip:E:/weblogic/user_projects/domains/base_domain/serve
- tomcat7性能调优(01)
toknowme
tomcat7
Tomcat优化: 1、最大连接数最大线程等设置
<Connector port="8082" protocol="HTTP/1.1"
useBodyEncodingForURI="t
- PO VO DAO DTO BO TO概念与区别
xp9802
javaDAO设计模式bean领域模型
O/R Mapping 是 Object Relational Mapping(对象关系映射)的缩写。通俗点讲,就是将对象与关系数据库绑定,用对象来表示关系数据。在O/R Mapping的世界里,有两个基本的也是重要的东东需要了解,即VO,PO。
它们的关系应该是相互独立的,一个VO可以只是PO的部分,也可以是多个PO构成,同样也可以等同于一个PO(指的是他们的属性)。这样,PO独立出来,数据持