MySQL主从复制数据不一致问题【自增主键】

前言:

       今天遇到主从表不一致的情况,很奇怪为什么会出现不一致的情况,因为复制状态一直都是正常的。最后检查出现不一致的数据都是主键,原来是当时初始化数据的时候导致的。现在分析记录下这个问题,避免以后再遇到这个"坑"。

背景:

      主从服务器,MIXED复制模式。

分析:

      表:SPU

       Table: SPU
Create Table: CREATE TABLE `SPU` (
  `id` int(10) unsigned NOT NULL AUTO_INCREMENT,
  `trademark` varchar(255) NOT NULL COMMENT '品牌',
  `item_code` varchar(255) NOT NULL COMMENT '货号',
  `product_id` int(10) DEFAULT '0',
  PRIMARY KEY (`id`),
  KEY `trademark` (`trademark`),
  KEY `item_code` (`item_code`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8 COMMENT='SPU'

当时的初始化操作的SQL:

INSERT INTO SPU(trademark, item_code) 
SELECT * FROM 
(
SELECT distinct lower(TRIM(a.`value`)) col1, lower(TRIM(b.`value`)) col2
FROM 
    product_property a  LEFT JOIN product_property b 
ON 
    a.product_id = b.product_id 
WHERE 
    a.property_id = 14 AND b.property_id = 9 AND a.value IS NOT NULL AND a.value <> '' 
AND 
    b.value IS NOT NULL AND b.value <> '' 
) as aa 

      上面的SQL执行完之后,主从表的COUNT数量一样,但SPU表有个自增主键,就在这里出现主从插入SPU的顺序不一样,即主从SELECT出来的结果顺序不一样。由于上面的结果集很大,所以就取前10条记录看看:

主:

现在表中数据的顺序:
zjy@192.168.10.23 : tt 04:38:48>select id,trademark col1,item_code col2 from SPU limit 10;
+----+-----------+-------------+
| id | col1      | col2        |
+----+-----------+-------------+
|  1 | 鼓浪屿    | gd rg       |
|  2 | 山松      | 10020122    |
|  3 | coulter   ||
|  4 | oricell   | mubmd-01101 |
|  5 | oricell   | huxma-01101 |
|  6 | oricell   | huxmf-01001 |
|  7 | oricell   | rawmx-01001 |
|  8 | oricell   | rasmx-01001 |
|  9 | oricell   | rafmx-01101 |
| 10 | oricell   | rbxmx-01001 |
+----+-----------+-------------+
10 rows in set (0.01 sec)

当时初始化的sql读出数据的顺序:
zjy@192.168.10.23 : tt 04:40:25>SELECT distinct lower(TRIM(a.`value`)) col1, lower(TRIM(b.`value`)) col2
    -> FROM 
    ->     product_property a  LEFT JOIN product_property b 
    -> ON 
    ->     a.product_id = b.product_id 
    -> WHERE 
    ->     a.property_id = 14 AND b.property_id = 9 AND a.value IS NOT NULL AND a.value <> '' 
    -> AND 
    ->     b.value IS NOT NULL AND b.value <> ''  limit 10;
+-----------+-------------+
| col1      | col2        |
+-----------+-------------+
| 鼓浪屿    | gd rg       |
| 山松      | 10020122    |
| coulter   ||
| oricell   | mubmd-01101 |
| oricell   | huxma-01101 |
| oricell   | huxmf-01001 |
| oricell   | rawmx-01001 |
| oricell   | rasmx-01001 |
| oricell   | rafmx-01101 |
| oricell   | rbxmx-01001 |
+-----------+-------------+
10 rows in set (0.01 sec)

上面结果col1,col2的顺序一模一样。

从:

现在表中数据的顺序:
zjy@192.168.10.8 : tt 04:38:03>select id,trademark col1,item_code col2 from SPU limit 10;
+----+--------------------------------+-----------------+
| id | col1                           | col2            |
+----+--------------------------------+-----------------+
|  1 | bio-rad                        | 125-0140        |
|  2 | oricell(tm)                    | huxma-90011     |
|  3 | oricell(tm)                    | huxmf-90011     |
|  4 | oricell(tm)                    | rawmx-90011     |
|  5 | oricell                        | rasmx-90011     |
|  6 | oricell                        | rafmx-90011     |
|  7 | oricell                        | rbxmx-90011     |
|  8 | 上海科技有限公司                 | bsm03011        |
|  9 | oricell                        | caxmx-90011     |
| 10 | oricell(tm)                    | tedta-10001-100 |
+----+--------------------------------+-----------------+
10 rows in set (0.00 sec)

当时初始化的sql读出数据的顺序:
zjy@192.168.10.8 : tt 04:38:58>SELECT distinct lower(TRIM(a.`value`)) col1, lower(TRIM(b.`value`)) col2
    -> FROM 
    ->     product_property a  LEFT JOIN product_property b 
    -> ON 
    ->     a.product_id = b.product_id 
    -> WHERE 
    ->     a.property_id = 14 AND b.property_id = 9 AND a.value IS NOT NULL AND a.value <> '' 
    -> AND 
    ->     b.value IS NOT NULL AND b.value <> ''  limit 10;
+--------------------------------+-----------------+
| col1                           | col2            |
+--------------------------------+-----------------+
| bio-rad                        | 125-0140        |
| oricell(tm)                    | huxma-90011     |
| oricell(tm)                    | huxmf-90011     |
| oricell(tm)                    | rawmx-90011     |
| oricell                        | rasmx-90011     |
| oricell                        | rafmx-90011     |
| oricell                        | rbxmx-90011     |
| 上海科技有限公司                 | bsm03011        |
| oricell                        | caxmx-90011     |
| oricell(tm)                    | tedta-10001-100 |
+--------------------------------+-----------------+
10 rows in set (0.01 sec)

上面结果col1,col2的顺序一模一样。

       到此为止,大家就清楚为什么SPU表的数据不一致了,准确来说是主键对应的数据不一致。要是自增主键只是提升INNODB的性能,没有业务上的意义,那么对于产品来说是没有影响的,可以忽略这个问题。否则,就需要好好的处理这个问题了。从另一个方面来说,也是因为复制的模式是STATEMENT引发这个问题的,因为同一个QUERY在2个地方执行出的结果不一样;要是ROW的复制模式,主会把所有字段的记录全部传送给从,就不会出现这个问题。

进一步分析: 为什么一样的SQL在主从上跑出来的数据顺序不一样呢?

      通过EXPLAIN 看到 主上的QUERY 先读 b表,再读a表;而从上的则是先扫描a表,再读b表。出现这样的情况,就是数据在块里面分布不一致,导致索引利用的方式也不一样,最终影响优化器的选择。因为INNODB是索引组织表的,一旦走的索引不一样,就会导致数据以不同的顺序被扫描出来。上面的这些结果刚好被验证。SQL执行计划如下:

主:先b再a

zjy@192.168.10.23 : tt 09:18:04>explain SELECT distinct lower(TRIM(a.`value`)) col1, lower(TRIM(b.`value`)) col2 FROM      product_property a  LEFT JOIN product_property b  ON      a.product_id = b.product_id  WHERE      a.property_id = 14 AND b.property_id = 9 AND a.value IS NOT NULL AND a.value <> ''  AND      b.value IS NOT NULL AND b.value <> '';
+----+-------------+-------+------+------------------------+-------------+---------+----------------------+---------+------------------------------+
| id | select_type | table | type | possible_keys          | key         | key_len | ref                  | rows    | Extra                        |
+----+-------------+-------+------+------------------------+-------------+---------+----------------------+---------+------------------------------+
|  1 | SIMPLE      | b     | ref  | property_id,product_id | property_id | 4       | const                | 4145932 | Using where; Using temporary |
|  1 | SIMPLE      | a     | ref  | property_id,product_id | product_id  | 4       | tt.b.product_id |       1 | Using where                  |
+----+-------------+-------+------+------------------------+-------------+---------+----------------------+---------+------------------------------+
2 rows in set (0.01 sec)

从:先a再b

zjy@192.168.10.8 : tt 09:18:13>explain SELECT distinct lower(TRIM(a.`value`)) col1, lower(TRIM(b.`value`)) col2 FROM      product_property a  LEFT JOIN product_property b  ON      a.product_id = b.product_id  WHERE      a.property_id = 14 AND b.property_id = 9 AND a.value IS NOT NULL AND a.value <> ''  AND      b.value IS NOT NULL AND b.value <> '';
+----+-------------+-------+------+------------------------+-------------+---------+----------------------+----------+------------------------------+
| id | select_type | table | type | possible_keys          | key         | key_len | ref                  | rows     | Extra                        |
+----+-------------+-------+------+------------------------+-------------+---------+----------------------+----------+------------------------------+
|  1 | SIMPLE      | a     | ref  | property_id,product_id | property_id | 4       | const                | 17079464 | Using where; Using temporary |
|  1 | SIMPLE      | b     | ref  | property_id,product_id | product_id  | 4       | tt.a.product_id |        5 | Using where                  |
+----+-------------+-------+------+------------------------+-------------+---------+----------------------+----------+------------------------------+
2 rows in set (0.13 sec)

主从对比发现,他们的执行计划和各表走的索引都不一样,导致最后出来的顺序也不一样的(结果集是一样的),这就验证了分析说的情况。那要是执行计划和索引一致呢?接下来继续验证下:

进一步验证:

因为INNODB是索引组织表的,索引就是数据,要是主从的执行计划一样,则他们的结果会是?

主的执行计划:
zjy@192.168.10.23 : tt 05:42:15>explain SELECT distinct lower(TRIM(a.`value`)) col1, lower(TRIM(b.`value`)) col2
    -> FROM 
    ->     product_property a  LEFT JOIN product_property b 
    -> ON 
    ->     a.product_id = b.product_id 
    -> WHERE 
    ->     a.property_id = 14 AND b.property_id = 9 AND a.value IS NOT NULL AND a.value <> '' 
    -> AND 
    ->     b.value IS NOT NULL AND b.value <> '';
+----+-------------+-------+------+------------------------+-------------+---------+----------------------+---------+------------------------------+
| id | select_type | table | type | possible_keys          | key         | key_len | ref                  | rows    | Extra                        |
+----+-------------+-------+------+------------------------+-------------+---------+----------------------+---------+------------------------------+
|  1 | SIMPLE      | b     | ref  | property_id,product_id | property_id | 4       | const                | 3771874 | Using where; Using temporary |
|  1 | SIMPLE      | a     | ref  | property_id,product_id | product_id  | 4       | tt.b.product_id |       1 | Using where                  |
+----+-------------+-------+------+------------------------+-------------+---------+----------------------+---------+------------------------------+
2 rows in set (0.01 sec)
 从的执行计划:
zjy@192.168.10.8 : tt 05:42:07>explain SELECT distinct lower(TRIM(a.`value`)) col1, lower(TRIM(b.`value`)) col2
    -> FROM 
    ->     product_property a  LEFT JOIN product_property b 
    -> ON 
    ->     a.product_id = b.product_id 
    -> WHERE 
    ->     a.property_id = 14 AND b.property_id = 9 AND a.value IS NOT NULL AND a.value <> '' 
    -> AND 
    ->     b.value IS NOT NULL AND b.value <> '';
+----+-------------+-------+------+------------------------+-------------+---------+----------------------+----------+------------------------------+
| id | select_type | table | type | possible_keys          | key         | key_len | ref                  | rows     | Extra                        |
+----+-------------+-------+------+------------------------+-------------+---------+----------------------+----------+------------------------------+
|  1 | SIMPLE      | b     | ref  | property_id,product_id | property_id | 4       | const                | 17375012 | Using where; Using temporary |
|  1 | SIMPLE      | a     | ref  | property_id,product_id | product_id  | 4       | tt.b.product_id |        5 | Using where                  |
+----+-------------+-------+------+------------------------+-------------+---------+----------------------+----------+------------------------------+
2 rows in set (0.00 sec)

执行计划一样,都是先b表再a表,再重新执行初始化的SQL:

主:

zjy@192.168.10.23 : tt 05:42:26>SELECT distinct lower(TRIM(a.`value`)) col1, lower(TRIM(b.`value`)) col2
    -> FROM 
    ->     product_property a  LEFT JOIN product_property b 
    -> ON 
    ->     a.product_id = b.product_id 
    -> WHERE 
    ->     a.property_id = 14 AND b.property_id = 9 AND a.value IS NOT NULL AND a.value <> '' 
    -> AND 
    ->     b.value IS NOT NULL AND b.value <> ''  limit 10
    -> ;
+-----------+-------------+
| col1      | col2        |
+-----------+-------------+
| 鼓浪屿    | gd rg       |
| 山松      | 10020122    |
| coulter   ||
| oricell   | mubmd-01101 |
| oricell   | huxma-01101 |
| oricell   | huxmf-01001 |
| oricell   | rawmx-01001 |
| oricell   | rasmx-01001 |
| oricell   | rafmx-01101 |
| oricell   | rbxmx-01001 |
+-----------+-------------+
10 rows in set (0.00 sec)

从:

zjy@192.168.10.8 : tt 05:42:32>SELECT distinct lower(TRIM(a.`value`)) col1, lower(TRIM(b.`value`)) col2
    -> FROM 
    ->     product_property a  LEFT JOIN product_property b 
    -> ON 
    ->     a.product_id = b.product_id 
    -> WHERE 
    ->     a.property_id = 14 AND b.property_id = 9 AND a.value IS NOT NULL AND a.value <> '' 
    -> AND 
    ->     b.value IS NOT NULL AND b.value <> ''  limit 10
    -> ;
+-----------+-------------+
| col1      | col2        |
+-----------+-------------+
| 鼓浪屿    | gd rg       |
| 山松      | 10020122    |
| coulter   ||
| oricell   | mubmd-01101 |
| oricell   | huxma-01101 |
| oricell   | huxmf-01001 |
| oricell   | rawmx-01001 |
| oricell   | rasmx-01001 |
| oricell   | rafmx-01101 |
| oricell   | rbxmx-01001 |
+-----------+-------------+
10 rows in set (0.01 sec)

好了,要是执行计划一样,结果是:SQL在主从上跑出来的结果一致了。

PS:另一个方法就是用ROW模式,有兴趣的可以测试下。

总结:

      主从复制在STATEMENT下面确实被忽略了一些问题,可以用ROW模式代替,但也要知道ROW模式有哪些问题,可以参考MySQL Binlog 【ROW】和【STATEMENT】选择 。也要清楚数据在磁盘块里面分布不一致,影响优化器的选择而导致索引利用的方式也不一样,最终也影响到数据的顺序。

      总之,在主从上执行一些比较大的数据量的操作(批量、初始化)的时候,尽可能的先去主从上查看他们的执行计划是否一样,走的索引是否一致,确保查询出来的结果一样。另:这篇文章:blog.xupeng.me/2013/10/11/mysql-replace-into-trap/(MySQL "replace into" 的坑) 也在一定程度上说明别用自增主键当成有意义的数据。
 

你可能感兴趣的:(Mysql主从)