[Everyday Mathematics]20150209

设 $f$ 在区间 $I$ 上三阶可导, $f'\neq 0$, 则可定义 $f$ 的 Schwarz 导数: $$\bex S(f,x)=\frac{f'''(x)}{f'(x)}-\frac{3}{2}\sez{\frac{f''(x)}{f'(x)}}^2 =\sez{\frac{f''(x)}{f'(x)}}'-\frac{1}{2}\sez{\frac{f''(x)}{f'(x)}}^2. \eex$$ 证明: 若 $p(x)$ 是 $x$ 的多项式, 且 $p'(x)$ 的根都是互不相同的实数, 则 $S(p,x)<0$.

你可能感兴趣的:(Math)