原题地址:https://oj.leetcode.com/problems/recover-binary-search-tree/
题意:
Two elements of a binary search tree (BST) are swapped by mistake.
Recover the tree without changing its structure.
解题思路:这题是说一颗二叉查找树中的某两个节点被错误的交换了,需要恢复成原来的正确的二叉查找树。
算法一:思路很简单,一颗二叉查找树的中序遍历应该是升序的,而两个节点被交换了,那么对这个错误的二叉查找树中序遍历,肯定不是升序的。那我们只需把顺序恢复过来然后进行重新赋值就可以了。开辟两个列表,list用来存储被破坏的二叉查找树的节点值,listp用来存储二叉查找树的节点的指针。然后将list排序,再使用listp里面存储的节点指针赋值就可以了。
代码:
# Definition for a binary tree node # class TreeNode: # def __init__(self, x): # self.val = x # self.left = None # self.right = None class Solution: # @param root, a tree node # @return a tree node def inorder(self, root, list, listp): if root: self.inorder(root.left, list, listp) list.append(root.val); listp.append(root) self.inorder(root.right, list, listp) def recoverTree(self, root): list = []; listp = [] self.inorder(root, list, listp) list.sort() for i in range(len(list)): listp[i].val = list[i] return root
算法二:
题目有一个附加要求就是要求空间复杂度为常数空间。而算法一的空间复杂度为O(N),还不够省空间。以下的解法也是中序遍历的写法,只是非常巧妙,使用了一个prev指针。例如一颗被破坏的二叉查找树如下:
4
/ \
2 6
/ \ / \
1 5 3 7
很明显3和5颠倒了。那么在中序遍历时:当碰到第一个逆序时:为5->4,那么将n1指向5,n2指向4,注意,此时n1已经确定下来了。然后prev和root一直向后遍历,直到碰到第二个逆序时:4->3,此时将n2指向3,那么n1和n2都已经确定,只需要交换节点的值即可。prev指针用来比较中序遍历中相邻两个值的大小关系,很巧妙。
代码:
# Definition for a binary tree node # class TreeNode: # def __init__(self, x): # self.val = x # self.left = None # self.right = None class Solution: # @param root, a tree node # @return a tree node def FindTwoNodes(self, root): if root: self.FindTwoNodes(root.left) if self.prev and self.prev.val > root.val: self.n2 = root if self.n1 == None: self.n1 = self.prev self.prev = root self.FindTwoNodes(root.right) def recoverTree(self, root): self.n1 = self.n2 = None self.prev = None self.FindTwoNodes(root) self.n1.val, self.n2.val = self.n2.val, self.n1.val return root