Carrot2 in action_初试身手—融入自己的中文分词器

http://jiajiam.spaces.live.com/blog/cns!E9F2928B37455D08!281.entry

 

初试身手融入自己的中文分词器 

 

现在准备着手写一个真正意义上的聚类搜素了。一开始担心老外的carrot2对中文会进行“歧视”,后来发现原来carrot2还是比较重视中文的,在有一个org.carrot2.filter.lingo.local.ChineseLingoLocalFilterComponent的类,专门用来为中文提供分词操作。再次往下细看,底层的分词造作在org.carrot2.util.tokenizer.parser.jflex.JeZHWordSplit中实现的,采用的是基于luceneMMAnalyer 。我没有使用过这种分词器,不知道它的消歧机制和切分效率如何,于是想拿经常使用的分词器来做个比较。于是,必须建立一个自己的中文filter组建。   以往经常使用的是中科院的java改良版(还是很慢)和c++版本的mmseg,由于使用的是自己家是windows平台的,所以只好用中科院的java改良版。 

1.              首先在org.carrot2.util.tokenizer.parser中新加一个分析器就叫KellyWordSplit

package org.carrot2.util.tokenizer.parser;

 

 

import org.apache.lucene.analysis.ictcals.FMNM;

import org.carrot2.util.tokenizer.parser.jflex.PreprocessedJFlexWordBasedParserBase;

public class KellyWordSplit extends PreprocessedJFlexWordBasedParserBase {

    //public Segment seg = null;

 

    public KellyWordSplit() {

//     try {

//         seg = new Segment(1, new File(".").getCanonicalPath()

//                + File.separator+"dic"+File.separator);

//     } catch (IOException e) {

//         // TODO Auto-generated catch block

//         e.printStackTrace();

//     }

    }

 

    @Override

    public String preprocess(String input) {

       System.out.println("cut:"+input);

       return FMNM.ICTCLASCut(input) ;

    }

 

}

 

然后再在这个包中建立一个解析工厂:ICTCALWordBasedParserFactory

package org.carrot2.util.tokenizer.parser;

 

import org.apache.commons.pool.BasePoolableObjectFactory;

import org.apache.commons.pool.ObjectPool;

import org.apache.commons.pool.impl.SoftReferenceObjectPool;

 

public class ICTCALWordBasedParserFactory {

    /** Chinese tokenizer factory */

    public static final ICTCALWordBasedParserFactory ChineseSimplified = new KellyICTCALWordBasedParserFactory();

 

    /** Parser pool */

    protected ObjectPool parserPool;

 

    /** No public constructor */

    private ICTCALWordBasedParserFactory() {

       // No public constructor

    }

 

    public WordBasedParserBase borrowParser() {

       try {

           return (WordBasedParserBase) parserPool.borrowObject();

       } catch (Exception e) {

           throw new RuntimeException("Cannot borrow a parser", e);

       }

    }

 

    /**

     * @param parser

     */

    public void returnParser(WordBasedParserBase parser) {

       try {

           parserPool.returnObject(parser);

       } catch (Exception e) {

           throw new RuntimeException("Cannot return a parser", e);

       }

    }

 

    /**

     * @author Stanislaw Osinski

     * @version $Revision: 2122 $

     */

    private static class KellyICTCALWordBasedParserFactory extends

           ICTCALWordBasedParserFactory {

       public KellyICTCALWordBasedParserFactory() {

           parserPool = new SoftReferenceObjectPool(

                  new BasePoolableObjectFactory() {

                     public Object makeObject() throws Exception {

                         return new KellyWordSplit();

                     }

                  });

       }

    }

 

}

11月23日

Carrot2 in action_初试身手—融入自己的中文分词器(2)

2.              第二步就是在org.carrot2.util.tokenizer.languages.chinese中建立一个自己的语言类ICTCALChineseSimplified
     public class ICTCALChineseSimplified extends StemmedLanguageBase{
    /**
     * A set of stopwords for this language.
     */
    private final static Set stopwords;
 
    /*
     * Load stopwords from an associated resource.
     */
    static
    {
        try
        {
            stopwords = WordLoadingUtils.loadWordSet("stopwords.zh-cn");
        }
        catch (IOException e)
        {
            throw new RuntimeException("Could not initialize class: " + e.getMessage());
        }
    }
 
    /**
     * Public constructor.
     */
    public ICTCALChineseSimplified()
    {
        super.setStopwords(stopwords);
    }
 
    /**
     * Creates a new instance of a {@link LanguageTokenizer} for this language.
     *
     * @see org.carrot2.util.tokenizer.languages.StemmedLanguageBase#createTokenizerInstanceInternal()
     */
    protected LanguageTokenizer createTokenizerInstanceInternal()
    {
        return ICTCALWordBasedParserFactory.ChineseSimplified.borrowParser();
    }
 
    /**
     * @return Language code: <code>pl</code>
     * @see org.carrot2.core.linguistic.Language#getIsoCode()
     */
    public String getIsoCode()
    {
        return "zh-cn";
    }
 
    protected Stemmer createStemmerInstance()
    {
        return EmptyStemmer.INSTANCE;
    }
}
 
3.              第三步就可以建立自己的中filter组建了:
package org.carrot2.filter.lingo.local;
 
import java.util.HashMap;
import java.util.Map;
 
import org.carrot2.core.linguistic.Language;
import org.carrot2.util.tokenizer.languages.chinese.ICTCALChineseSimplified;
import org.carrot2.util.tokenizer.languages.english.English;
 
public class ICTCALLingoLocalFilterComponent extends LingoLocalFilterComponent {
    public ICTCALLingoLocalFilterComponent() {
       super(new Language[] { new English(), new ICTCALChineseSimplified() },
              new ICTCALChineseSimplified(), new HashMap());
    }
 
    public ICTCALLingoLocalFilterComponent(Map parameters) {
       super(new Language[] { new English(), new ICTCALChineseSimplified() },
              new ICTCALChineseSimplified(), parameters);
    }
 
}
哈哈,是不是很容易啊?怎么用它呢?
如下:
//
       final LocalComponentFactory lingo = new LocalComponentFactory() {
           public LocalComponent getInstance() {
                HashMap defaults = new HashMap();
             
              // These are adjustments settings for the clustering algorithm...
              // You can play with them, but the values below are our 'best guess'
              // settings that we acquired experimentally.
              defaults.put("lsi.threshold.clusterAssignment", "0.150");
              defaults.put("lsi.threshold.candidateCluster",  "0.775");
 
              // we will use the defaults here, see {@link Example}
              // for more verbose configuration.
              //return new ChineseLingoLocalFilterComponent();
              return new ICTCALLingoLocalFilterComponent(defaults);
           }
       };
 
       // add the clustering component as "lingo-classic"
       controller.addLocalComponentFactory("lingo-classic", lingo);
下一次,我将谈谈如何将carrot2融合自己的搜索框架,以及在架构上对搜索聚类/分类的一些自己的看法
 
11月24日

Carrot2 in action(3)_融入系统

接上面阐述,从以上两种聚类的结构和效率来看,其实carrot2自带的MMAnalyer的效果都还不错,没有特殊需求可以不用加入自己的分词组建。

 

融入系统

Carrot2针对来自lucene的搜索源提供了专门的输入组建LuceneLocalInputComponent,看了它里面的结构,我觉得并不符合我这套系统的搜索架构

,换句话说LuceneLocalInputComponent太过“傻瓜”化,对于需要高性能的应用并不适合。于是我决定使用carrot2的直接输入输出组建ArrayInputComponentArrayOutputComponent,俗话说“最基本的也是最灵活的”真的是不错!此外我选用lingo算法的过滤组建。Ok,一切就绪,马上着手组建。一下是主要程序片段:

 

    /**

     * @param documentList:原信息

     * @return ArrayOutputComponent.Result 下午03:55:03

     */

    public ArrayOutputComponent.Result cluster(

           List<RawDocumentSnippet> documentList) {

       final HashMap params = new HashMap();

       params

              .put(ArrayInputComponent.PARAM_SOURCE_RAW_DOCUMENTS,

                     documentList);

//     params

//     .put(ArrayInputComponent.,

//            documentList);

       ProcessingResult pResult;

       try {

           pResult = controller.query("direct-feed-lingo", query, params);

           return (ArrayOutputComponent.Result) pResult.getQueryResult();

       } catch (MissingProcessException e) {

           // TODO Auto-generated catch block

           e.printStackTrace();

       } catch (Exception e) {

           // TODO Auto-generated catch block

           e.printStackTrace();

       }

       return null

 
11月24日

Carrot2 in action(4)_融入系统

private LocalController initLocalController() throws DuplicatedKeyException {
       final LocalController controller = new LocalControllerBase();
       //
       // Create direct document feed input component factory. The documents
       // that that this component will feed will be provided at clustering
       // request time.
       //
       final LocalComponentFactory input = new LocalComponentFactory() {
           public LocalComponent getInstance() {
              return new ArrayInputComponent();
           }
       };
 
       // add direct document feed input as 'input-direct'
       controller.addLocalComponentFactory("input-direct", input);
 
       //
       // Now it's time to create filters. We will use Lingo clustering
       // component.
       //
       final LocalComponentFactory lingo = new LocalComponentFactory() {
           public LocalComponent getInstance() {
                HashMap defaults = new HashMap();
             
              // These are adjustments settings for the clustering algorithm...
              // You can play with them, but the values below are our 'best guess'
              // settings that we acquired experimentally.
              defaults.put("lsi.threshold.clusterAssignment", "0.150");
              defaults.put("lsi.threshold.candidateCluster",  "0.775");
 
              // we will use the defaults here, see {@link Example}
              // for more verbose configuration.
              //return new ChineseLingoLocalFilterComponent();
              return new ICTCALLingoLocalFilterComponent(defaults);
           }
       };
 
       // add the clustering component as "lingo-classic"
       controller.addLocalComponentFactory("lingo-classic", lingo);
 
       //
       // Finally, create a result-catcher component
       //
       final LocalComponentFactory output = new LocalComponentFactory() {
           public LocalComponent getInstance() {
              return new ArrayOutputComponent();
           }
       };
 
       // add the output component as "buffer"
       controller.addLocalComponentFactory("buffer", output);
 
       //
       // In the final step, assemble a process from the above.
       //
       try {
           controller
                  .addProcess("direct-feed-lingo", new LocalProcessBase(
                         "input-direct", "buffer",
                         new String[] { "lingo-classic" }));
 
       } catch (InitializationException e) {
           // This exception is thrown during verification of the added
           // component chain,
           // when a component cannot properly initialize for some reason. We
           // don't
           // expect it here, so rethrow it as runtime exception.
           throw new RuntimeException(e);
       } catch (MissingComponentException e) {
           // If you give an identifier of a component for which factory has
           // not been
           // added to the controller, you'll get this exception. Impossible in
           // our
           // example.
           throw new RuntimeException(e);
       }
 
       return controller;
    }
11月24日

Carrot2 in action(5)_融入系统

到这儿一切主要的步骤就差不多了,剩下的就是如何组装聚类结果并返回了。我选择了以xml的方式返回。一下是主要片段:

/**

     * 将结果组装成xml中,并返回

     *

     * @param result

     * @return String 上午11:17:08

     */

    public String wrapperResult(ArrayOutputComponent.Result result,

           ClusterObject co) {

       if (result == null) {

           return null;

       }

       StringBuilder sb = new StringBuilder();

       final List clusters = result.clusters;

       int size = clusters.size();

       if (size > 0) {

           sb.append("<CLUSTERS_SIZE>");

           sb.append(size);

           sb.append("</CLUSTERS_SIZE>");

 

           int num = 1;

           for (Iterator i = clusters.iterator(); i.hasNext(); num++) {

              wrapperCluster(sb, 0, (RawCluster) i.next(), co);

           }

       }

       return sb.toString();

    }

Carrot2 in action(6)_融入系统

 /**
     * wrap the content of a single cluster, descending recursively to
     * subclusters.
     *
     * @param level
     *            current nesting level.
     * @param tag
     *            prefix for the current nesting level.
     * @param cluster
     *            cluster to display.
     * @return String 上午11:24:04
     */
    private void wrapperCluster(StringBuilder sb, final int level,
           RawCluster cluster, ClusterObject co) {
       // Detect and skip "junk" clusters -- clusters that have no meaning.
       // Also note that clusters have properties. Algorithms may pass
       // additional
       // information about clusters this way.
       if (cluster.getProperty(RawCluster.PROPERTY_JUNK_CLUSTER) != null) {
           return;
       }
       sb.append("<CLUSTER>");
 
       // Get the label of the current cluster. The description of a cluster
       // is a list of strings, ordered according to the accuracy of their
       // relationship with the cluster's content. Typically you'll just
       // show the first few phrases. We'll limit ourselves to just one.
       final List phrases = cluster.getClusterDescription();
       final String label = (String) phrases.get(0);
       sb.append("<LABEL><![CDATA[");
       sb.append(label);
       sb.append("]]></LABEL>");
       sb.append("<SIZE>");
       int size = cluster.getDocuments().size();
       sb.append(size);
       sb.append("</SIZE>");
       if (size > 0)
       // if this cluster has documents, display three topmost documents.
       {
           int count = 1;
           sb.append("<DOCUMENTS>");
           for (Iterator d = cluster.getDocuments().iterator(); d.hasNext(); count++) {
              final RawDocument document = (RawDocument) d.next();
              sb.append("<DOC>");
 
              // <NUM>
              sb.append(count);
              sb.append(System.getProperty("line.separator"));
              // <Score>
              sb.append(document.getScore());
              sb.append(System.getProperty("line.separator"));
              // <ID>
              sb.append(document.getTitle());
              sb.append(System.getProperty("line.separator"));
              // <Value>
              sb.append(document.getProperty("Value"));
              sb.append(System.getProperty("line.separator"));
              // <Key>
              String Key = document.getSnippet();
              Key = highlightUtil.highlight(StringUtil.filterKeyWords(Key),
                     StringUtil.filterKeyWords(co.keyWord), false, analyzer,
                     co.hiliPrefix, co.hiliPostfix);
              sb.append(Key);
              sb.append(System.getProperty("line.separator"));
              sb.append("</DOC>");
 
           }
           sb.append("</DOCUMENTS>");
       }
       // finally, if this cluster has subclusters, descend into recursion.
       int scnum = cluster.getClusterDescription().size();
       if (scnum > 0) {
           int num = 1;
           sb.append("<SUBCLUSTER>");
           for (Iterator c = cluster.getSubclusters().iterator(); c.hasNext(); num++) {
              wrapperCluster(sb, level + 1, (RawCluster) c.next(), co);
           }
           sb.append("</SUBCLUSTER>");
       }
       sb.append("</CLUSTER>");
 
    }
    主要的步骤到此基本就完成了。当然其中还有很多关系到性能的细节问题,如缓存的设置,聚类和搜索的并发处理等等,都需要根据各自系统的需求而处理。这里就不累述。
11月24日

Carrot2 in action(7)_多嘴说说

多嘴说说

       其实carrot2是一个做实时聚类的开源项目,它聚类的输入类型是数组,即将所有要聚类的数据一次性输入,这样无疑对大数据量的聚类操作是不合适的。所以carrot2适合做新闻发布系统等实时聚类的项目。本人草草的看了一下源码,发现carrot2主要聚类操作在MultilingualClusteringContextMultilingualFeatureExtractionStrategy

;特征值采用VSMvector space model向量空间模型),提取主要一下方法来完成private Feature[] extractSingleTerms()

rivate Feature[] extractPhraseTerms(int[] indexMapping)

实施聚类需要边搜索边聚类,这无比给搜索性能带来负面影响。为了提高聚类和搜索的效率,我预备从框架上做一个新调整,思路如下:就是专门开一个聚类/分类的进程。第一步,搜索进程将聚类信息传递给聚类/分类进程后,就可以去做自己的事情了,如组装xml(结果中带有一个key定义该此搜索嘴硬的聚类结果值)等等。第二步,当聚类/分类进程收到聚类信息后,开始聚类/分类操作,组装聚类的结果。第三步,这一步可以有两种实现方式:一种是当前台显示层接收到搜索结果后,根据结果xml中的聚类Key值去聚类/分类进程拿聚类结果,这种方式在于前台可以尽快的显示搜索结果,而且如果聚类/分类进程和搜索进程不在一台服务器上,还可以减少搜索进程的并发负担,因为它可以快速的返回减少在搜索服务器的停留时间。但是这种方式会增大前台显示的通讯负担和显示效果,因为一次搜索前台会提出两次请求,而且搜索结果和左侧聚类会分两次先后显现,即异步显示;另一种方式就是在返回结果前由后台搜索进程从聚类/分类进程中取结果,并组装返回,它的好处是减少了前台的通讯次,而且两中结果(聚类和搜索)会同时显现,感官上会好接受一些。但这种方式的不足在于一次搜索的时间会变长,即用户等待结果的时间会变长。

    啊,java的世界真是广阔无垠啊,开源真是个促进技术发展的好东西。原来有一个叫weka的开源项目,早已在数据挖掘界众人皆知了,它里面有着很多data mining的算法实现,对于大数据量也很使用,所以接下来,我将对weka展开“攻击”o(_)o…

你可能感兴趣的:(action)