就这样莫名其妙的过了,不过可以确定之前都是被精度卡死了。真心受不了精度问题了。
题意:一条直线在一个不规则多边形内的长度,包括边重合部分。
首先计算出所有交点,然后按想x,y的大小进行二级排序。
然后判断相邻两点之间的线段是否在多边形内。
设两点为a,b,其重点为c。
若c在内部或边上,则线段ab必符合条件。
判断点在多边形内的方法可以参考下面的链接:
http://www.cnblogs.com/hhyypp/archive/2011/12/05/2276984.html
#include <iostream> #include <cstring> #include <cstdlib> #include <cstdio> #include <queue> #include <cmath> #include <algorithm> #define LL long long #define EPS (1e-8) const double Double_PI = 2.0*acos(-1.0); using namespace std; struct P { double x,y; }sp[100100],p[100100]; int top; bool cmp(P p1,P p2) { if(fabs(p1.x - p2.x) < EPS) { return p1.y < p2.y; } return p1.x < p2.x; } double X_Mul(P a1,P a2,P b1,P b2) { P v1 = {a2.x-a1.x , a2.y-a1.y},v2 = {b2.x-b1.x , b2.y-b1.y}; return (v1.x*v2.y-v1.y*v2.x); } P Line_Cross_Position(P l1,P l2,P s1,P s2) { P cp = s1; double t = fabs(X_Mul(l1,l2,l1,s1)) / fabs(X_Mul(l1,l2,s2,s1)); cp.x += t*(s2.x-s1.x); cp.y += t*(s2.y-s1.y); return cp; } double Cal_Angle(P a1,P a2,P b1,P b2) { P v1 = {a2.x-a1.x,a2.y-a1.y},v2 = {b2.x-b1.x,b2.y-b1.y}; if(fabs(X_Mul(a1,a2,b1,b2)) < EPS) return 0; if(X_Mul(a1,a2,b1,b2) >= EPS) return acos((v1.x*v2.x+v1.y*v2.y)/(sqrt( (v1.x*v1.x + v1.y*v1.y)*(v2.x*v2.x + v2.y*v2.y) ))); return -acos((v1.x*v2.x+v1.y*v2.y)/(sqrt( (v1.x*v1.x + v1.y*v1.y)*(v2.x*v2.x + v2.y*v2.y) ) ) ); } double Cal_Point_Dis(P p1,P p2) { return sqrt( (p1.x-p2.x)*(p1.x-p2.x) + (p1.y-p2.y)*(p1.y-p2.y) ); } double Point_In_Segment(P p,P p1,P p2) { if( fabs(Cal_Point_Dis(p1,p2) - Cal_Point_Dis(p,p1) - Cal_Point_Dis(p,p2) ) < EPS) return true; return false; } bool Is_Point_In_Polygon(P tp,int n) { int i; double asum = 0; for(i = 0;i < n; ++i) { asum += Cal_Angle(tp,p[i],tp,p[i+1]); } if(fabs(fabs(asum) - Double_PI) < EPS) return true; for(i = 0;i < n; ++i) { if(Point_In_Segment(tp,p[i],p[i+1]) ) return true; } return false; } double Length_In_Polygon(P pa,P pb,int n) { double lsum,xm1,xm2; int i; P temp; for(i = 0;i < n; ++i) { xm1 = X_Mul(pa,pb,pa,p[i]); xm2 = X_Mul(pa,pb,pa,p[i+1]); if(xm1*xm2 < -EPS) { sp[top++] = Line_Cross_Position(pa,pb,p[i],p[i+1]); } else { if(fabs(xm1) < EPS) sp[top++] = p[i]; if(fabs(xm2) < EPS) sp[top++] = p[i+1]; } } sort(sp,sp+top,cmp); for(i = 1,lsum = 0;i < top; ++i) { temp.x = (sp[i].x + sp[i-1].x)/2; temp.y = (sp[i].y + sp[i-1].y)/2; if(Is_Point_In_Polygon(temp,n)) { lsum += Cal_Point_Dis(sp[i],sp[i-1]); } } return lsum; } int main() { int i,n,m; P pa,pb; while( scanf("%d %d",&n,&m) && (n||m) ) { for(i = 0;i < n; ++i) { scanf("%lf %lf",&p[i].x,&p[i].y); } p[n] = p[0]; while(m--) { scanf("%lf %lf %lf %lf",&pa.x,&pa.y,&pb.x,&pb.y); top = 0; printf("%.3lf\n",Length_In_Polygon(pa,pb,n)); } } return 0; }