文本分词、替换文本中特殊符号、去除低频词(Counter
计数器,统计字符出现的个数)、单词映射表
# 筛选低频词
words_count = Counter(words)
words = [w for w in words if words_count[w] > 50]
# 构建映射表
vocab = set(words)
vocab_to_int = {w: c for c, w in enumerate(vocab)}
int_to_vocab = {c: w for c, w in enumerate(vocab)}
print("total words: {}".format(len(words)))
print("unique words: {}".format(len(set(words))))
# 对原文本进行vocab到int的转换
int_words = [vocab_to_int[w] for w in words]
对停用词进行采样,计算每个单词被删除的概率大小如下:
其中,t是一个阈值参数,一般为1e-3至1e-5;f(wi)是单词 wi 在整个数据集中的出现频次;P(wi)是单词被删除的概率。
t = 1e-5 # t值
threshold = 0.9 # 剔除概率阈值
# 统计单词出现频次
int_word_counts = Counter(int_words)
total_count = len(int_words)
# 计算单词频率
word_freqs = {w: c/total_count for w, c in int_word_counts.items()}
# 计算被删除的概率
prob_drop = {w: 1 - np.sqrt(t / word_freqs[w]) for w in int_word_counts}
# 对单词进行采样
train_words = [w for w in int_words if prob_drop[w] < threshold]
print(len(train_words))
构造batch:基于每个input word的上下文构建batch
设置窗口大小为m,在[1,m]之间生成随机数,作为最终的窗口大小。随机数的窗口重新选择步骤,能够让模型更聚焦于当前input word的邻近词。
# 获得input word的上下文单词列表
def get_targets(words, idx, window_size=5):
# words: 单词列表
# idx: input word的索引号
# window_size: 窗口大小
target_window = np.random.randint(1, window_size + 1)
# 这里要考虑input word前面单词不够的情况
start_point = idx - target_window if (idx - target_window) > 0 else 0
end_point = idx + target_window
# output words(即窗口中的上下文单词)
targets = set(words[start_point: idx] + words[idx + 1: end_point + 1])
return list(targets)
# 构造一个获取batch的生成器
def get_batches(words, batch_size, window_size=5):
n_batches = len(words) // batch_size
# 取所有的batches
words = words[:n_batches * batch_size]
for idx in range(0, len(words), batch_size):
x, y = [], []
batch = words[idx: idx + batch_size]
for i in range(len(batch)):
batch_x = batch[i]
batch_y = get_targets(batch, i, window_size)
# 由于一个input word会对应多个output word,因此需要长度统一
x.extend([batch_x] * len(batch_y))
y.extend(batch_y)
yield x, y
输入层到嵌入层,一般embeding_size设置为50-300之间
train_graph = tf.Graph()
with train_graph.as_default():
inputs = tf.placeholder(tf.int32, shape=[None], name='inputs')
labels = tf.placeholder(tf.int32, shape=[None, None], name='labels')
# 嵌入矩阵的矩阵形状为 vocab_size × hidden_units_size
vocab_size = len(int_to_vocab)
embedding_size = 200 # 嵌入维度
with train_graph.as_default():
# 嵌入层权重矩阵
embedding = tf.Variable(tf.random_uniform([vocab_size, embedding_size], -1, 1))
# 实现lookup
embed = tf.nn.embedding_lookup(embedding, inputs)
嵌入层到输出层,负采样主要是为了解决梯度下降计算速度慢的问题
n_sampled = 100
with train_graph.as_default():
softmax_w = tf.Variable(tf.truncated_normal([vocab_size, embedding_size], stddev=0.1))
softmax_b = tf.Variable(tf.zeros(vocab_size))
# 计算negative sampling下的损失
# tf.nn.sampled_softmax_loss会在softmax层上进行采样计算损失,计算出的loss要比full softmax loss低
loss = tf.nn.sampled_softmax_loss(softmax_w, softmax_b, labels, embed, n_sampled, vocab_size)
cost = tf.reduce_mean(loss)
optimizer = tf.train.AdamOptimizer().minimize(cost)
查看训练出的相近语义的词
with train_graph.as_default():
# 随机挑选一些单词
## From Thushan Ganegedara's implementation
valid_size = 7 # Random set of words to evaluate similarity on.
valid_window = 100
# pick 8 samples from (0,100) and (1000,1100) each ranges. lower id implies more frequent
valid_examples = np.array(random.sample(range(valid_window), valid_size//2))
valid_examples = np.append(valid_examples,
random.sample(range(1000,1000+valid_window), valid_size//2))
valid_examples = [vocab_to_int['word'],
vocab_to_int['ppt'],
vocab_to_int['熟悉'],
vocab_to_int['java'],
vocab_to_int['能力'],
vocab_to_int['逻辑思维'],
vocab_to_int['了解']]
valid_size = len(valid_examples)
# 验证单词集
valid_dataset = tf.constant(valid_examples, dtype=tf.int32)
# 计算每个词向量的模并进行单位化
norm = tf.sqrt(tf.reduce_sum(tf.square(embedding), 1, keep_dims=True))
normalized_embedding = embedding / norm
# 查找验证单词的词向量
valid_embedding = tf.nn.embedding_lookup(normalized_embedding, valid_dataset)
# 计算余弦相似度
similarity = tf.matmul(valid_embedding, tf.transpose(normalized_embedding))
epochs = 10 # 迭代轮数
batch_size = 1000 # batch大小
window_size = 10 # 窗口大小
with train_graph.as_default():
saver = tf.train.Saver() # 文件存储
with tf.Session(graph=train_graph) as sess:
iteration = 1
loss = 0
sess.run(tf.global_variables_initializer())
for e in range(1, epochs+1):
batches = get_batches(train_words, batch_size, window_size)
start = time.time()
#
for x, y in batches:
feed = {inputs: x,
labels: np.array(y)[:, None]}
train_loss, _ = sess.run([cost, optimizer], feed_dict=feed)
loss += train_loss
if iteration % 100 == 0:
end = time.time()
print("Epoch {}/{}".format(e, epochs),
"Iteration: {}".format(iteration),
"Avg. Training loss: {:.4f}".format(loss/100),
"{:.4f} sec/batch".format((end-start)/100))
loss = 0
start = time.time()
# 计算相似的词
if iteration % 1000 == 0:
# 计算similarity
sim = similarity.eval()
for i in range(valid_size):
valid_word = int_to_vocab[valid_examples[i]]
top_k = 8 # 取最相似单词的前8个
nearest = (-sim[i, :]).argsort()[1:top_k+1]
log = 'Nearest to [%s]:' % valid_word
for k in range(top_k):
close_word = int_to_vocab[nearest[k]]
log = '%s %s,' % (log, close_word)
print(log)
iteration += 1
save_path = saver.save(sess, "checkpoints/text8.ckpt")
embed_mat = sess.run(normalized_embedding)
sklearn中的TSNE来对高维词向量进行可视化
增大训练样本,语料库越大,模型学习的可学习的信息会越多。
增加window size,可以获得更多的上下文信息。
增加embedding size可以减少信息的维度损失,但也不宜过大,我一般常用的规模为50-300。
参考:https://zhuanlan.zhihu.com/p/27296712
C语言源代码:https://github.com/chrisjmccormick/word2vec_commented
英文教程:http://mccormickml.com/2016/04/27/word2vec-resources/