kafka消息格式为(None,[json串])
利用Python3有以下3种方式将kafka消息的往HBASE写入
1、直接消费kafka消息写入HBASE:
from kafka import KafkaConsumer
import time
import happybase
import json
hbase_ip='192.168.xxx.xxx'
hbase_port=9090
ip = hbase_ip
port = hbase_port
pool = happybase.ConnectionPool(size=3, host=ip)
#往tableName里插数据
def hbase_load(tableName, lists):
with pool.connection() as connection:
connection.open()
if tableName not in str(connection.tables()):
create_table(connection, tableName)
#print(tableName,str(connection.tables()))
table = connection.table(tableName)
b = table.batch(batch_size=1024)
for li in lists:
try:
rowkey = li['info']
data_dicts = {}
for d, x in li.items():
key = "ss:" + d
value = str(x)
data_dicts[key] = value
b.put(row=rowkey, data=data_dicts)
b.send()
print("rowkey:" + rowkey + " data append success")
except Exception as ex:
print(str(ex) + " 插入数据失败")
connection.close()
#创建HBASE表
def create_table(conn, table):
try:
conn.create_table(
table,
{
"ss": dict(max_versions=10)
}
)
except Exception as ex:
print(str(ex) + " table exists !!!")
#打印日志
def log(str):
t = time.strftime(r"%Y-%m-%d_%H-%M-%S", time.localtime())
print("[%s]%s" % (t, str))
lst = []
log('start consumer')
# 消费192.168.xxx.xxx:9092上的logfile 这个Topic,指定consumer group是test-consumer-group
consumer = KafkaConsumer('logfile', group_id='test-consumer-group', bootstrap_servers=['192.168.xxx.xxx:9092'])
for msg in consumer:
recv = "%s:%d:%d: key=%s value=%s" % (msg.topic, msg.partition, msg.offset, msg.key, msg.value)
log(recv)
dict_data = json.loads(msg.value)
dict_data['info'] = str(dict_data['time'])+'-'+dict_data['pool']
lst.append(dict_data)
hbase_load('logfile_zf', lst)
2、使用sparkstreaming的方法直接将RDD往HBASE写:
写入HBASE配置参考:http://dblab.xmu.edu.cn/blog/1715-2/
需要注意:在Spark 2.0版本上缺少相关把hbase的数据转换python可读取的jar包,需要我们另行下载。
打开spark-examples_2.11-1.6.0-typesafe-001.jar下载jar包
#!/usr/bin/env python3
from pyspark import SparkConf, SparkContext
from pyspark.streaming import StreamingContext
from pyspark.streaming.kafka import KafkaUtils
import json
import time
conf = SparkConf().setAppName("logSparkStreaming")
sc = SparkContext(conf=conf)
ssc = StreamingContext(sc, 5)
# HBASE表,需要提前在HBASE中建好
table = 'logfile_stream2'
broker = "192.168.xxx.xxx:9092"
# kafka的topic
topic = "logfile"
# HBASE的zookeeper
hbaseZK = "192.168.xxx.xxx"
keyConv = "org.apache.spark.examples.pythonconverters.StringToImmutableBytesWritableConverter"
valueConv = "org.apache.spark.examples.pythonconverters.StringListToPutConverter"
hbaseConf = {"hbase.zookeeper.quorum": hbaseZK, "hbase.mapred.outputtable": table,
"mapreduce.outputformat.class": "org.apache.hadoop.hbase.mapreduce.TableOutputFormat",
"mapreduce.job.output.key.class": "org.apache.hadoop.hbase.io.ImmutableBytesWritable",
"mapreduce.job.output.value.class": "org.apache.hadoop.io.Writable"}
#打印日志
def log(str):
t = time.strftime(r"%Y-%m-%d %H:%M:%S", time.localtime())
print("[%s]%s" % (t, str))
#处理RDD元素,此RDD元素需为字典类型
def fmt_data(msg_dict):
if msg_dict is not None:
msg_dict['info'] = str(msg_dict['time'])+'-'+msg_dict['pool']
rowkey = msg_dict['info']
lst = []
for d, x in msg_dict.items():
col_name = d
col_value = str(x)
col_family = 'ss'
# 需要将RDD中的字典的每个键值对准备成这种元组格式(rowkey, [row key, column family, column name, value])写入HBASE
msg_tuple = (rowkey, [rowkey, col_family, col_name, col_value])
print("rowkey:" + rowkey + "\ndata " + str(msg_tuple) + " append success")
lst.append(msg_tuple)
return lst
#处理RDD并向HBASE中写入
def connectAndWrite(data):
if not data.isEmpty():
# 接收到的RDD中的元素转为字典,收到的格式为(None,[json串]),所以map第二个元素反序列化成为字典类型
msg_list = data.map(lambda x: json.loads(x[1]))
# 打印RDD观察,类似一个以字典类型数据为元素的列表
log(msg_list.collect())
try:
# 处理RDD中元素为写入HBASE需要的格式,形成元组格式
msg_row = msg_list.map(lambda x: fmt_data(x))
# print(msg_row.flatMap(lambda x: x).map(lambda x: x).collect())
# 将RDD中所有元素中的元组扁平化,再map后往HBASE存储
msg_row.flatMap(lambda x: x).map(lambda x: x).saveAsNewAPIHadoopDataset(conf=hbaseConf, keyConverter=keyConv,valueConverter=valueConv)
except Exception as ex:
print(str(ex) + " 插入数据失败")
kafkaStreams = KafkaUtils.createDirectStream(ssc, [topic], kafkaParams={"metadata.broker.list": broker})
# kafkaStreams.pprint()
kafkaStreams.foreachRDD(connectAndWrite)
log('start consumer')
ssc.start()
ssc.awaitTermination()
提交spark的命令如下:
$SPARK_HOME/bin/spark-submit --master local --packages org.apache.spark:spark-streaming-kafka_2.11:1.6.0 --jars spark-examples_2.11-1.6.0-typesafe-001.jar /home/user/spark/sparkstreaming_kafka2.py > /home/user/spark/sparkstreaming_kafka.log
注:spark-examples_2.11-1.6.0-typesafe-001.jar为把hbase的数据转换python可读取的jar包
3、读出sparkstreaming的RDD数据往HBASE写:
#!/usr/bin/env python3
from pyspark import SparkConf, SparkContext
from pyspark.streaming import StreamingContext
from pyspark.streaming.kafka import KafkaUtils
from pyspark.sql import SQLContext
import json
import time
import happybase
hbase_ip='192.168.xxx.xxx'
hbase_port=9090
ip = hbase_ip
port = hbase_port
pool = happybase.ConnectionPool(size=3, host=ip)
#创建HBASE表
def create_table(conn, table):
try:
conn.create_table(
table,
{
"ss": dict(max_versions=10)
}
)
except Exception as ex:
print(str(ex) + " table exists !!!")
#打印日志
def log(str):
t = time.strftime(r"%Y-%m-%d_%H-%M-%S", time.localtime())
print("[%s]%s" % (t, str))
def writeHbase(msg):
with pool.connection() as connection:
connection.open()
if table not in str(connection.tables()):
create_table(connection, table)
#print(tableName,str(connection.tables()))
hbaseTable = connection.table(table)
b = hbaseTable.batch(batch_size=1024)
if not msg.isEmpty():
# print(msg.collect())
msg_rdd = msg.map(lambda x: json.loads(x[1]))
# 读出RDD数据赋给Python变量来写入HBASE
msg_list = msg_rdd.collect()
lst = []
for msg_dict in msg_list:
# print(msg_dict)
msg_dict['info'] = str(msg_dict['time'])+'-'+msg_dict['pool']
lst.append(msg_dict)
# print(lst)
try:
rowkey = msg_dict['info']
data_dict = {}
for d, x in msg_dict.items():
key = "ss:" + d
value = str(x)
data_dict[key] = value
b.put(row=rowkey, data=data_dict)
b.send()
print("rowkey:" + rowkey + "\ndata " + str(data_dict) + " append success")
except Exception as ex:
print(str(ex) + " 插入数据失败")
connection.close()
conf = SparkConf().setAppName("logSparkStreaming")
sc = SparkContext(conf=conf)
ssc = StreamingContext(sc, 2)
sqc = SQLContext(sc)
table = 'logfile_stream'
broker = "192.168.xxx.xxx:9092"
topic = "logfile"
kafkaStreams = KafkaUtils.createDirectStream(ssc, [topic], kafkaParams={"metadata.broker.list": broker})
# kafkaStreams.pprint()
kafkaStreams.foreachRDD(writeHbase)
log('start consumer')
ssc.start()
ssc.awaitTermination()
$SPARK_HOME/bin/spark-submit --master local[3] --packages org.apache.spark:spark-streaming-kafka_2.11:1.6.0 /home/user/spark/sparkstreaming_kafka.py > /home/user/spark/sparkstreaming_kafka.log