Python环境中,利用opencv做人脸检测


CascadeClassifier是Opencv中做人脸检测时候的一个级联分类器,该类中封装的是目标检测机制即滑动窗口机制+级联分类器的方式。数据结构包括Data和FeatureEvaluator两个主要部分。Data中存储的是从训练获得的xml文件中载入的分类器数据;而FeatureEvaluator中是关于特征的载入、存储和计算。这里采用的训练文件是OpenCV中默认提供的haarcascade_frontalface_default.xml。至于Haar,LBP的具体原理,可以参考opencv的相关文档,简单地,可以理解为人脸的特征数据。

import cv2

face_patterns = cv2.CascadeClassifier('Z:\\VMware_VMs_share-2\\vc_material\\opencv-master\\data\\haarcascades\\haarcascade_frontalface_default.xml')


sample_image = cv2.imread('Z:\\VMware_VMs_share-2\\vc_material\\faces.jpg')

faces = face_patterns.detectMultiScale(sample_image,scaleFactor=1.1,minNeighbors=5,minSize=(100, 100))

for (x, y, w, h) in faces:
    cv2.rectangle(sample_image, (x, y), (x+w, y+h), (0, 255, 0), 2)

cv2.imwrite('Z:\\VMware_VMs_share-2\\vc_material\\201807_detected.png', sample_image);

调用 CascadeClassifier 中的调detectMultiScale函数进行多尺度检测,多尺度检测中会调用单尺度的方法detectSingleScale。

参数说明:

  • scaleFactor 是 图像的缩放因子
  • minNeighbors 为每一个级联矩形应该保留的邻近个数,可以理解为一个人周边有几个人脸
  • minSize 是检测窗口的大小

这些参数都是可以针对图片进行调整的,处理结果返回一个人脸的矩形对象列表。



你可能感兴趣的:(opencv)