使用CD-K算法实现RBM

#encoding:utf-8
import matplotlib.pylab as plt
import numpy as np
import random
from scipy.linalg import norm
import PIL.Image


class Rbm:
    def __init__(self,n_visul, n_hidden, max_epoch = 50, batch_size = 110, penalty = 2e-4, anneal = False, w = None, v_bias = None, h_bias = None):
        self.n_visible = n_visul
        self.n_hidden = n_hidden
        self.max_epoch = max_epoch
        self.batch_size = batch_size
        self.penalty = penalty
        self.anneal = anneal

        if w is None:
            self.w = np.random.random((self.n_visible, self.n_hidden)) * 0.1    #初始化可见层到隐层的权重矩阵
        if v_bias is None:
            self.v_bias = np.zeros((1, self.n_visible))
        if h_bias is None:
            self.h_bias = np.zeros((1, self.n_hidden))
    def sigmod(self, z):
        return 1.0 / (1.0 + np.exp( -z ))   #定义一个激活函数

    def forward(self, vis):
        #if(len(vis.shape) == 1):
            #vis = np.array([vis])
        #vis = vis.transpose()
        #if(vis.shape[1] != self.w.shape[0]):
        vis = vis.transpose()

        pre_sigmod_input = np.dot(vis, self.w) + self.h_bias    #按照矩阵乘法进行相乘
        return self.sigmod(pre_sigmod_input)

    def backward(self, vis):
        #if(len(vis.shape) == 1):
            #vis = np.array([vis])
        #vis = vis.transpose()
        #if(vis.shape[0] != self.w.shape[1]):
        back_sigmod_input = np.dot(vis, self.w.transpose()) + self.v_bias
        return self.sigmod(back_sigmod_input)
    def batch(self):

        eta = 0.1
        momentum = 0.5
    d,N = self.x.shape

        num_batchs = int(round(N / self.batch_size)) + 1    #训练批次大小
        groups = np.ravel(np.repeat([range(0, num_batchs)], self.batch_size, axis = 0))
        groups = groups[0 : N]
        perm = range(0, N)
        random.shuffle(perm)
        groups = groups[perm]
        batch_data = []
        for i in range(0, num_batchs):
            index = groups == i
            batch_data.append(self.x[:, index])
        return batch_data
    def rbmBB(self, x):
    self.x = x
    eta = 0.1
    momentum = 0.5
    W = self.w
    b = self.h_bias
    c = self.v_bias
    Wavg = W
    bavg = b
    cavg = c
    Winc  = np.zeros((self.n_visible, self.n_hidden))
    binc = np.zeros(self.n_hidden)
    cinc = np.zeros(self.n_visible)
    avgstart = self.max_epoch - 5;
        batch_data = self.batch()
        num_batch = len(batch_data)

        oldpenalty= self.penalty
    t = 1
    errors = []
        for epoch in range(0, self.max_epoch):
            err_sum = 0.0
            if(self.anneal):
                penalty = oldpenalty - 0.9 * epoch / self.max_epoch * oldpenalty

            for batch in range(0, num_batch):
                num_dims, num_cases = batch_data[batch].shape
                data = batch_data[batch]
                #forward
                ph = self.forward(data)
                ph_states = np.zeros((num_cases, self.n_hidden))
                ph_states[ph > np.random.random((num_cases, self.n_hidden))] = 1

                #backward
                nh_states = ph_states
                neg_data = self.backward(nh_states)
                neg_data_states = np.zeros((num_cases, num_dims))
                neg_data_states[neg_data > np.random.random((num_cases, num_dims))] = 1

                #forward one more time
        neg_data_states = neg_data_states.transpose()
                nh = self.forward(neg_data_states)
                nh_states = np.zeros((num_cases, self.n_hidden))
                nh_states[nh > np.random.random((num_cases, self.n_hidden))] = 1

                #update weight and biases
                dW = np.dot(data, ph) - np.dot(neg_data_states, nh)
                dc = np.sum(data, axis = 1) - np.sum(neg_data_states, axis = 1)
                db = np.sum(ph, axis = 0) - np.sum(nh, axis = 0)
                Winc = momentum * Winc + eta * (dW / num_cases - self.penalty * W)
                binc = momentum * binc + eta * (db / num_cases);
        cinc = momentum * cinc + eta * (dc / num_cases);
        W = W + Winc
        b = b + binc
        c = c + cinc

        self.w = W
        self.h_bais = b
        self.v_bias = c
        if(epoch > avgstart):
            Wavg -= (1.0 / t) * (Wavg - W)
            cavg -= (1.0 / t) * (cavg - c)
            bavg -= (1.0 / t) * (bavg - b)
            t += 1
        else:
            Wavg = W
            bavg = b
            cavg = c
        #accumulate reconstruction error
        err = norm(data - neg_data.transpose())

        err_sum += err
        print epoch, err_sum
        errors.append(err_sum)
    self.errors = errors
    self.hiden_value = self.forward(self.x)

    h_row, h_col = self.hiden_value.shape
    hiden_states = np.zeros((h_row, h_col))
    hiden_states[self.hiden_value > np.random.random((h_row, h_col))] = 1
    self.rebuild_value = self.backward(hiden_states)

    self.w = Wavg
    self.h_bais = b
    self.v_bias = c
    def visualize(self, X):
    D, N = X.shape
    s = int(np.sqrt(D))
    if s == int(np.floor(s)):
        num = int(np.ceil(np.sqrt(N)))
        a = np.zeros((num*s + num + 1, num * s + num + 1)) - 1.0
        x = 0
        y = 0
        for i in range(0, N):
        z = X[:,i]
        z = z.reshape(s,s,order='F')

        z = z.transpose()
        a[x*s+1+x - 1:x*s+s+x , y*s+1+y - 1:y*s+s+y ] = z
        x = x + 1
        if(x >= num):
            x = 0
            y = y + 1
        d = True
    else:
        a = X
    return a
def readData(path):
    data = []
    for line in open(path, 'r'):
    ele = line.split(' ')
    tmp = []
    for e in ele:
        if e != '':
        tmp.append(float(e.strip(' ')))
    data.append(tmp)
    return data

if __name__ == '__main__':
    data = readData('data.txt')
    data = np.array(data)
    data = data.transpose()
    rbm = Rbm(784, 100,max_epoch = 50)
    rbm.rbmBB(data)

    a = rbm.visualize(data)
    fig = plt.figure(1)
    ax = fig.add_subplot(111)
    ax.imshow(a)
    plt.title('original data')

    rebuild_value = rbm.rebuild_value.transpose()
    b = rbm.visualize(rebuild_value)
    fig = plt.figure(2)
    ax = fig.add_subplot(111)
    ax.imshow(b)
    plt.title('rebuild data')

    hidden_value = rbm.hiden_value.transpose()
    c = rbm.visualize(hidden_value)
    fig = plt.figure(3)
    ax = fig.add_subplot(111)
    ax.imshow(c)
    plt.title('hidden data')
# 
# w_value = rbm.w
# d = rbm.visualize(w_value)
# fig = plt.figure(4)
# ax = fig.add_subplot(111)
# ax.imshow(d)
# plt.title('weight value(w)')
    plt.show()




代码中使用的数据太多没办法粘贴出来,如果大家有需要的话,可以私信给我,留下自己的邮箱, 我会尽快发给大家

你可能感兴趣的:(机器学习)