在实际日常中,人们会经常遇到如下问题:在某个给定的定义域 X X 内,求函数 f(x) f ( x ) 对应的最优值。此处以最小值问题举例(最大值问题可以等价转化成最小值问题),形式化为:
随着日常业务场景的复杂化,第三种问题经常遇见。如何有效地避免局部最优的困扰?模拟退火算法应运而生。其实模拟退火也算是启发式算法的一种,具体学习的是冶金学中金属加热-冷却的过程。由S.Kirkpatrick, C.D.Gelatt和M.P.Vecchi在1983年所发明的,V.Čern在1985年也独立发明此演算法。
不过模拟退火算法到底是如何模拟金属退火的原理?主要是将热力学的理论套用到统计学上,将搜寻空间内每一点想像成空气内的分子;分子的能量,就是它本身的动能;而搜寻空间内的每一点,也像空气分子一样带有“能量”,以表示该点对命题的合适程度。演算法先以搜寻空间内一个任意点作起始:每一步先选择一个“邻居”,然后再计算从现有位置到达“邻居”的概率。若概率大于给定的阈值,则跳转到“邻居”;若概率较小,则停留在原位置不动。
模拟退火其实也是一种贪心算法,但是它的搜索过程引入了随机因素。在迭代更新可行解时,以一定的概率来接受一个比当前解要差的解,因此有可能会跳出这个局部的最优解,达到全局的最优解。以下图为例,假定初始解为左边蓝色点A,模拟退火算法会快速搜索到局部最优解B,但在搜索到局部最优解后,不是就此结束,而是会以一定的概率接受到左边的移动。也许经过几次这样的不是局部最优的移动后会到达全局最优点D,于是就跳出了局部最小值。
在实际问题中,这里的“一定的概率”的计算参考了金属冶炼的退火过程。假定当前可行解为 x x ,迭代更新后的解为 x_new x _ n e w ,那么对应的“能量差”定义为:
模拟退火算法的应用很广泛,可以高效地求解NP完全问题,如货郎担问题(Travelling Salesman Problem,简记为TSP)、最大截问题(Max Cut Problem)、0-1背包问题(Zero One Knapsack Problem)、图着色问题(Graph Colouring Problem)等等,但其参数难以控制,不能保证一次就收敛到最优值,一般需要多次尝试才能获得(大部分情况下还是会陷入局部最优值)。观察模拟退火算法的过程,发现其主要存在如下三个参数问题:
(1) 温度T的初始值设置问题
温度 T T 的初始值设置是影响模拟退火算法全局搜索性能的重要因素之一、初始温度高,则搜索到全局最优解的可能性大,但因此要花费大量的计算时间;反之,则可节约计算时间,但全局搜索性能可能受到影响。
(2) 退火速度问题,即每个 T T 值的迭代次数
模拟退火算法的全局搜索性能也与退火速度密切相关。一般来说,同一温度下的“充分”搜索是相当必要的,但这也需要计算时间。循环次数增加必定带来计算开销的增大。
(3) 温度管理问题
温度管理问题也是模拟退火算法难以处理的问题之一。实际应用中,由于必须考虑计算复杂度的切实可行性等问题,常采用如下所示的降温方式:
经过上面理论知识的熏陶,相信大家已经对模拟退火算法有了较深入的理解,接下来通过实战再强化一下大家的认识,此处利用模拟退火算法求解如下优化问题:
# -*- coding: utf-8 -*-
import numpy as np
import matplotlib.pyplot as plt
def inputfun(x):
return (x-2)*(x+3)*(x+8)*(x-9)
initT = 1000 #初始温度
minT = 1 #温度下限
iterL = 1000 #每个T值的迭代次数
delta = 0.95 #温度衰减系数
k = 1
initx = 10*(2*np.random.rand()-1)
nowt = initT
print "初始解:",initx
xx = np.linspace(-10,10,300)
yy = inputfun(xx)
plt.figure()
plt.plot(xx,yy)
plt.plot(initx,inputfun(initx),'o')
#模拟退火算法寻找最小值过程
while nowt>minT:
for i in np.arange(1,iterL,1):
funVal = inputfun(initx)
xnew = initx+(2*np.random.rand()-1)
if xnew>=-10 and xnew<=10:
funnew = inputfun(xnew)
res = funnew-funVal
if res<0:
initx = xnew
else:
p = np.exp(-(res)/(k*nowt))
if np.random.rand()# print initx-xnew
# print initx
# print nowt
nowt = nowt*delta
print "最优解:",initx
print "最优值:",inputfun(initx)
plt.plot(initx,inputfun(initx),'*r')
plt.show()