半小时学会LevelDB原理及应用

LevelDB

LevelDB之概览

  LevelDB是Google传奇工程师Jeff Dean和Sanjay Ghemawat开源的KV存储引擎。
  了解原理之前首先要用起来,下面动手实现个例子:安装调试(mac上直接命令行下brew install leveldb即可安装,编译时候记得加上-lleveldb)
  example:

#include 
#include 
#include 
#include 

int main(int argc, char** argv)
{
    leveldb::DB* db;
    leveldb::Options options;
    // 如果打开已存在数据库的时候,需要抛出错误,将以下代码插在leveldb::DB::Open方法前面
    options.create_if_missing = true;
    // 打开一个数据库实例
    leveldb::Status status = leveldb::DB::Open(options, "/tmp/testdb", &db);
    assert(status.ok());
    // LevelDB提供了Put、Get和Delete三个方法对数据库进行添加、查询和删除
    std::string key = "key";
    std::string value = "value";
    // 添加key=value
    status = db->Put(leveldb::WriteOptions(), key, value);
    assert(status.ok());
    // 根据key查询value
    status = db->Get(leveldb::ReadOptions(), key, &value);
    assert(status.ok());
    std::cout<Put(leveldb::WriteOptions(),key2,value);
    assert(status.ok());
    // 删除key
    status = db->Delete(leveldb::WriteOptions(), key);
    // 查询key2
    assert(status.ok());
    status = db->Get(leveldb::ReadOptions(), key2, &value);
    assert(status.ok());
    std::cout<Get(leveldb::ReadOptions(), key, &value);
    if (!status.ok()) {
        std::cerr << key << ": " << status.ToString() << std::endl;
    } else {
        std::cout << key << "==" << value << std::endl;
    }
    delete db;
    return 0;
}
  •  

设计思路

  LevelDB的数据是存储在磁盘上的,采用LSM-Tree的结构实现。LSM-Tree将磁盘的随机写转化为顺序写,从而大大提高了写速度。

  为了做到这一点LSM-Tree的思路是将索引树结构拆成一大一小两颗树,较小的一个常驻内存,较大的一个持久化到磁盘,他们共同维护一个有序的key空间。

  写入操作会首先操作内存中的树,随着内存中树的不断变大,会触发与磁盘中树的归并操作,而归并操作本身仅有顺序写。随着数据的不断写入,磁盘中的树会不断膨胀,为了避免每次参与归并操作的数据量过大,以及优化读操作的考虑,LevelDB将磁盘中的数据又拆分成多层,每一层的数据达到一定容量后会触发向下一层的归并操作,每一层的数据量比其上一层成倍增长。这也就是LevelDB的名称来源。

整体结构

内存数据的Memtable,分层数据存储的SST文件,版本控制的Manifest、Current文件,以及写Memtable前的WAL。

WAL: Write-Ahead Logging预写日志系统
数据库中一种高效的日志算法,对于非内存数据库而言,磁盘I/O操作是数据库效率的一大瓶颈。在相同的数据量下,采用WAL日志的数据库系统在事务提交时,磁盘写操作只有传统的回滚日志的一半左右,大大提高了数据库磁盘I/O操作的效率,从而提高了数据库的性能。


Memtable:

  对应Leveldb中的内存数据,LevelDB的写入操作会直接将数据写入到Memtable后返回。读取操作又会首先尝试从Memtable中进行查询,允许写入和读取。当Memtable写入的数据占用内存到达指定数量,则自动转换为Immutable Memtable,等待Dump到磁盘中,系统会自动生成新的Memtable供写操作写入新数据。
  LevelDB采用跳表SkipList实现,在给提供了O(logn)的时间复杂度的同时,又非常的易于实现:

跳表作为一种数据结构通常用于取代平衡树,与红黑树不同的是,skiplist对于树的平衡的实现是基于一种随机化的算法的,也就是说skiplist的插入和删除的工作是比较简单地。

  SkipList中单条数据存放一条Key-Value数据,定义为:

SkipList Node := InternalKey + ValueString
InternalKey := KeyString + SequenceNum + Type
Type := kDelete or kValue
ValueString := ValueLength + Value
KeyString := UserKeyLength + UserKey

Log文件

  当应用写入一条Key:Value记录的时候,LevelDb会先往log文件里写入,成功后将记录插进Memtable中,这样基本就算完成了写入操作,Log文件在系统中的作用主要是用于系统崩溃恢复而不丢失数据,假如没有Log文件,因为写入的记录刚开始是保存在内存中的,此时如果系统崩溃,内存中的数据还没有来得及Dump到磁盘,所以会丢失数据(Redis就存在这个问题)。
  因为一次写入操作只涉及一次磁盘顺序写和一次内存写入,所以这是为何说LevelDb写入速度极快的主要原因。
  LevelDB首先将每条写入数据序列化为一个Record,单个Log文件中包含多个Record。同时,Log文件又划分为固定大小的Block单位,并保证Block的开始位置一定是一个新的Record。这种安排使得发生数据错误时,最多只需丢弃一个Block大小的内容。显而易见地,不同的Record可能共存于一个Block,同时,一个Record也可能横跨几个Block。


  Log文件划分为固定长度的Block,由连续的32K为单位的物理Block构成的,每次读取的单位是以一个Block作为基本单位;每个Block中包含多个Record;Record的前56个位为Record头,包括32位checksum用做校验,16位存储Record实际内容数据的长度,8位的Type可以是Full、First、Middle或Last中的一种,表示该Record是否完整的在当前的Block中,如果Type不是Full,则通过Type指明其前后的Block中是否有当前Record的前驱后继。

Block := Record * N
Record := Header + Content
Header := Checksum + Length + Type
Type := Full or First or Midder or Last

Immutable Memtable

  当Memtable插入的数据占用内存到了一个界限后,需要将内存的记录导出到外存文件中,LevleDb会生成新的Log文件和Memtable,Memtable会变为Immutable,为之后向SST文件的归并做准备。顾名思义,Immutable Mumtable不再接受用户写入,只能读不能写入或者删除,同时会有新的Log文件和Memtable生成,LevelDb后台调度会将Immutable Memtable的数据导出到磁盘,形成一个新的SSTable文件。

SST文件

  SSTable就是由内存中的数据不断导出并进行Compaction操作(压缩操作,下文会讲到)后形成的,而且SSTable的所有文件是一种层级结构,第一层为Level 0,第二层为Level 1,依次类推,层级逐渐增高,这也是为何称之为LevelDb的原因。
  磁盘数据存储文件。分为Level 0Level N多层,每一层包含多个SST文件;单个SST文件容量随层次增加成倍增长;文件内数据有序;其中Level 0的SST文件由Immutable直接Dump产生,其他Level的SST文件由其上一层的文件和本层文件归并产生;SST文件在归并过程中顺序写生成,生成后仅可能在之后的归并中被删除,而不会有任何的修改操作。
  SSTable中的文件是Key有序的,就是说在文件中小key记录排在大Key记录之前,各个Level的SSTable都是如此,但是这里需要注意的一点是:Level 0的SSTable文件(后缀为.sst)和其它Level的文件相比有特殊性:这个层级内的.sst文件,两个文件可能存在key重叠,比如有两个level 0的sst文件,文件A和文件B,文件A的key范围是:{bar, car},文件B的Key范围是{blue,samecity}:

level N .sst max min
Level 0 A.sst “bar” “car”
Level 0 B.sst “blue” “samecity”

  那么很可能两个文件都存在key=”blood”的记录。对于其它Level的SSTable文件来说,则不会出现同一层级内。

SST文件的物理格式

  LevelDb不同层级有很多SSTable文件(以后缀.sst为特征),所有.sst文件内部布局都是一样的。上节介绍Log文件是物理分块的,SSTable也一样会将文件划分为固定大小的物理存储块,但是两者逻辑布局大不相同,根本原因是:Log文件中的记录是Key无序的,即先后记录的key大小没有明确大小关系,而.sst文件内部则是根据记录的Key由小到大排列的。
  LevelDB将SST文件定义为Table,每个Table又划分为多个连续的Block,每个Block中又存储多条数据Entry:

  可以看出,单个Block作为一个独立的写入和解析单位,会在其末尾存储一个字节的Type和4个字节的Crc,其中Type记录的是当前Block的数据压缩策略(Snappy压缩或者无压缩两种),而Crc则存储Block中数据的校验信息。
  Block中每条数据Entry是以Key-Value方式存储的,并且是按Key有序存储,Leveldb很巧妙了利用了有序数组相邻Key可能有相同的Prefix的特点来减少存储数据量。如上图所示,每个Entry只记录自己的Key与前一个Entry Key的不同部分,
  在Entry开头记录三个长度值,分别是当前Entry和其之前Entry的公共Key Prefix长度、当前Entry Key自有Key部分的长度和Value的长度。通过这些长度信息和其后相邻的特有Key及Value内容,结合前一条Entry的Key内容,我们可以方便的获得当前Entry的完整Key和Value信息。

例如要顺序存储Key值“apple” = value1“applepen” = value2的两条数据,这里第二个Entry中,key共享长度为5,key非共享长度为3,value长度为6,key非共享内容为“pen”,value内容为“value2”.

  这种方式非常好的减少了数据存储,但同时也引入一个风险,如果最开头的Entry数据损坏,其后的所有Entry都将无法恢复。为了降低这个风险,leveldb引入了重启点,每隔固定条数Entry会强制加入一个重启点,这个位置的Entry会完整的记录自己的Key,并将其shared值设置为0。同时,Block会将这些重启点的偏移量及个数记录在所有Entry后边的Tailer中。

SST文件的逻辑格式

  Table中不同的Block物理上的存储方式一致,如上文所示,但在逻辑上可能存储不同的内容,包括存储数据的Block,存储索引信息的Block,存储Filter的Block:

  • Data Block:
    从图中可以看出,其内部也分为两个部分,前面是一个个KV记录,其顺序是根据Key值由小到大排列的,在Block尾部则是一些“重启点”(Restart Point),其实是一些指针,指出Block内容中的一些记录位置。

  • Footer:为于Table尾部,记录指向Metaindex Block的Handle和指向Index Block的Handle。需要说明的是Table中所有的Handle是通过偏移量Offset以及Size一同来表示的,用来指明所指向的Block位置。Footer是SST文件解析开始的地方,通过Footer中记录的这两个关键元信息Block的位置,可以方便的开启之后的解析工作。另外Footer中还记录了用于验证文件是否为合法SST文件的常数值Magic num。

  • Index Block:记录Data Block位置信息的Block,其中的每一条Entry指向一个Data Block,其Key值为所指向的Data Block最后一条数据的Key,Value为指向该Data Block位置的Handle。
  • Metaindex Block:与Index Block类似,由一组Handle组成,不同的是这里的Handle指向的Meta Block。
Data Block:以Key-Value的方式存储实际数据,其中Key定义为:
DataBlock Key := UserKey + SequenceNum + Type 
//对比Memtable中的Key,可以发现Data Block中的Key并没有拼接UserKey的长度在UserKey前,
//这是由于上面讲到的物理结构中已经有了Key的长度信息。
Type := kDelete or kValue
  • Meta Block:比较特殊的Block,用来存储元信息,目前LevelDB使用的仅有对布隆过滤器的存储。写入Data Block的数据会同时更新对应Meta Block中的过滤器。读取数据时也会首先经过布隆过滤器过滤。Meta Block的物理结构也与其他Block有所不同:
 [filter 0]
 [filter 1]
 [filter 2]
 ... 
 [filter N-1]
 [offset of filter 0] : 4 bytes
 [offset of filter 1] : 4 bytes
 [offset of filter 2] : 4 bytes
 ... 
 [offset of filter N-1] : 4 bytes
 [offset of beginning of offset array] : 4 bytes
 lg(base) : 1 byte

其中每个filter节对应一段Key Range,落在某个Key Range的Key需要到对应的filter节中查找自己的过滤信息,base指定这个Range的大小。

Manifest文件

  Manifest文件中记录SST文件在不同Level的分布,单个SST文件的最大最小key,以及其他一些LevelDB需要的元信息。
  SSTable中的某个文件属于特定层级,而且其存储的记录是key有序的,那么必然有文件中的最小key和最大key,这是非常重要的信息,LevelDb应该记下这些信息。Manifest就是干这个的

Current文件

  从上面的介绍可以看出,LevelDB启动时的首要任务就是找到当前的Manifest,而Manifest可能有多个。Current文件简单的记录了当前Manifest的文件名,从而让这个过程变得非常简单。
  Current文件的内容只有一个信息,就是记载当前的manifest文件名。因为在LevleDb的运行过程中,随着Compaction的进行,SSTable文件会发生变化,会有新的文件产生,老的文件被废弃,Manifest也会跟着反映这种变化,此时往往会新生成Manifest文件来记载这种变化,而Current则用来指出哪个Manifest文件才是我们关心的那个Manifest文件。

主要操作

读写操作

写流程

  LevelDB的写操作包括设置key-value和删除key两种。需要指出的是这两种情况在LevelDB的处理上是一致的,删除操作其实是向LevelDB插入一条标识为删除的数据。
  Memtable并不存在真正的删除操作,删除某个Key的Value在Memtable内是作为插入一条记录实施的,但是会打上一个Key的删除标记,真正的删除操作是Lazy的,会在以后的Compaction过程中去掉这个KV。

  从图中可以看出,对于一个插入操作Put(Key,Value)来说,完成插入操作包含两个具体步骤:
  首先是将这条KV记录以顺序写的方式追加到之前介绍过的log文件末尾,因为尽管这是一个磁盘读写操作,但是文件的顺序追加写入效率是很高的,所以并不会导致写入速度的降低;
  第二个步骤是:如果写入log文件成功,那么将这条KV记录插入内存中的Memtable中,前面介绍过,Memtable只是一层封装,其内部其实是一个Key有序的SkipList列表,插入一条新记录的过程也很简单,即先查找合适的插入位置,然后修改相应的链接指针将新记录插入即可。完成这一步,写入记录就算完成了。
  所以一个插入记录操作涉及一次磁盘文件追加写和内存SkipList插入操作,这是为何levelDb写入速度如此高效的根本原因。
  LevelDb的接口没有直接支持更新操作的接口,如果需要更新某个Key的Value,你可以选择直接生猛地插入新的KV,保持Key相同,这样系统内的key对应的value就会被更新;或者你可以先删除旧的KV, 之后再插入新的KV,这样比较委婉地完成KV的更新操作。

读流程

  

  首先,生成内部查询所用的Key,用生成的Key,依次尝试从 Memtable,Immtable以及SST文件中读取,直到找到(或者查到最高level,查找失败,说明整个系统中不存在这个Key)。
  从信息的更新时间来说,很明显Memtable存储的是最新鲜的KV对;Immutable Memtable中存储的KV数据对的新鲜程度次之;而所有SSTable文件中的KV数据新鲜程度一定不如内存中的Memtable和Immutable Memtable的。对于SSTable文件来说,如果同时在level L和Level L+1找到同一个key,level L的信息一定比level L+1的要新。也就是说,上面列出的查找路径就是按照数据新鲜程度排列出来的,越新鲜的越先查找。

举个例子。比如我们先往levelDb里面插入一条数据 {key="www.samecity.com" value="我们"},过了几天,samecity网站改名为:69同城,此时我们插入数据{key="www.samecity.com" value="69同城"},同样的key,不同的value;逻辑上理解好像levelDb中只有一个存储记录,即第二个记录,但是在levelDb中很可能存在两条记录,即上面的两个记录都在levelDb中存储了,此时如果用户查询key="www.samecity.com",我们当然希望找到最新的更新记录,也就是第二个记录返回,这就是为何要优先查找新鲜数据的原因。

  从SST文件中查找需要依次尝试在每一层中读取,得益于Manifest中记录的每个文件的key区间,我们可以很方便的知道某个key是否在文件中。Level 0的文件由于直接由Immutable Dump 产生,不可避免的会相互重叠,所以需要对每个文件依次查找。对于其他层次,由于归并过程保证了其互相不重叠且有序,二分查找的方式提供了更好的查询效率。
  可以看出同一个Key出现在上层的操作会屏蔽下层的。也因此删除Key时只需要在Memtable压入一条标记为删除的条目即可。被其屏蔽的所有条目会在之后的归并过程中清除。
  相对写操作,读操作处理起来要复杂很多,所以写的速度必然要远远高于读数据的速度,也就是说,LevelDb比较适合写操作多于读操作的应用场合。而如果应用是很多读操作类型的,那么顺序读取效率会比较高,因为这样大部分内容都会在缓存中找到,尽可能避免大量的随机读取操作。

levelDb中的Cache

  读取操作如果没有在内存的memtable中找到记录,要多次进行磁盘访问操作。假设最优情况,即第一次就在level 0中最新的文件中找到了这个key,那么也需要读取2次磁盘,一次是将SSTable的文件中的index部分读入内存,这样根据这个index可以确定key是在哪个block中存储;第二次是读入这个block的内容,然后在内存中查找key对应的value。
  levelDb中引入了两个不同的Cache: Table Cache 和 Block Cache。其中Block Cache是配置可选的,即在配置文件中指定是否打开这个功能。

  在Cache中,key值是SSTable的文件名称,Value部分包含两部分,一个是指向磁盘打开的SSTable文件的文件指针,这是为了方便读取内容;另外一个是指向内存中这个SSTable文件对应的Table结构指针,table结构在内存中,保存了SSTable的index内容以及用来指示block cache用的cache_id ,当然除此外还有其它一些内容。
  比如在get(key)读取操作中,如果levelDb确定了key在某个level下某个文件A的key range范围内,那么需要判断是不是文件A真的包含这个KV。此时,levelDb会首先查找Table Cache,看这个文件是否在缓存里,如果找到了,那么根据index部分就可以查找是哪个block包含这个key。如果没有在缓存中找到文件,那么打开SSTable文件,将其index部分读入内存,然后插入Cache里面,去index里面定位哪个block包含这个Key 。如果确定了文件哪个block包含这个key,那么需要读入block内容,这是第二次读取。

File
cache_id + block_offset
block内容
File
cache_id + block_offset
block内容
File
cache_id + block_offset
block内容
File
cache_id + block_offset
block内容

  Block Cache是为了加快这个过程的,如上图。其中的key是文件的cache_id加上这个block在文件中的起始位置block_offset。而value则是这个Block的内容。
  如果levelDb发现这个block在block cache中,那么可以避免读取数据,直接在cache里的block内容里面查找key的value就行,如果没找到呢?那么读入block内容并把它插入block cache中。levelDb就是这样通过两个cache来加快读取速度的。
  从这里可以看出,如果读取的数据局部性比较好,也就是说要读的数据大部分在cache里面都能读到,那么读取效率应该还是很高的,而如果是对key进行顺序读取效率也应该不错,因为一次读入后可以多次被复用。但是如果是随机读取,您可以推断下其效率如何。

压缩操作

  为了加快读取速度,levelDb采取了compaction的方式来对已有的记录进行整理压缩,通过这种方式,来删除掉一些不再有效的KV数据,减小数据规模,减少文件数量等。
  数据压缩是LevelDB中重要的部分,即上文提到的归并。冷数据会随着Compaction不断的下移,同时过期的数据也会在合并过程中被删除。
  LevelDB的压缩操作由单独的后台线程负责。这里的Compaction包括两个部分,Memtable向Level 0 SST文件的Compaction,以及SST文件向下层的Compaction。
  levelDb的compaction机制和过程与Bigtable所讲述的是基本一致的,Bigtable中讲到三种类型的compaction: minor ,major和full。所谓minor Compaction,就是把memtable中的数据导出到SSTable文件中;major compaction就是合并不同层级的SSTable文件,而full compaction就是将所有SSTable进行合并。
  LevelDb包含其中两种,minor和major。

minor compaction

  Minor compaction 的目的是当内存中的memtable大小到了一定值时,将内容保存到磁盘文件中:

  当memtable数量到了一定程度会转换为immutable memtable,此时不能往其中写入记录,只能从中读取KV内容。之前介绍过,immutable memtable其实是一个多层级队列SkipList,其中的记录是根据key有序排列的。所以这个minor compaction实现起来也很简单,就是按照immutable memtable中记录由小到大遍历,并依次写入一个level 0的新建SSTable文件中,写完后建立文件的index数据,这样就完成了一次minor compaction。
  CompactMemTable函数会将Immutable中的数据整体Dump为Level 0的一个文件,这个过程会在Immutable Memtable存在时被Compaction后台线程调度。
  过程比较简单,首先会获得一个Immutable的Iterator用来遍历其中的所有内容,创建一个新的Level 0 SST文件,并将Iterator读出的内容依次顺序写入该文件。之后更新元信息并删除Immutable Memtable。

major compaction

  当某个level下的SSTable文件数目超过一定设置值后,levelDb会从这个level的SSTable中选择一个文件(level>0),将其和高一层级的level+1的SSTable文件合并,这就是major compaction。
  我们知道在大于0的层级中,每个SSTable文件内的Key都是由小到大有序存储的,而且不同文件之间的key范围(文件内最小key和最大key之间)不会有任何重叠。Level 0的SSTable文件有些特殊,尽管每个文件也是根据Key由小到大排列,但是因为level 0的文件是通过minor compaction直接生成的,所以任意两个level 0下的两个sstable文件可能再key范围上有重叠。所以在做major compaction的时候,对于大于level 0的层级,选择其中一个文件就行,但是对于level 0来说,指定某个文件后,本level中很可能有其他SSTable文件的key范围和这个文件有重叠,这种情况下,要找出所有有重叠的文件和level 1的文件进行合并,即level 0在进行文件选择的时候,可能会有多个文件参与major compaction。
  同层的文件轮流来compaction,比如这次是文件A进行compaction,那么下次就是在key range上紧挨着文件A的文件B进行compaction,这样每个文件都会有机会轮流和高层的level 文件进行合并。如果选好了level L的文件A和level L+1层的文件进行合并,那么问题又来了,应该选择level L+1哪些文件进行合并?levelDb选择L+1层中和文件A在key range上有重叠的所有文件来和文件A进行合并。
  

  Major compaction的过程如下:对多个文件采用多路归并排序的方式,依次找出其中最小的Key记录,也就是对多个文件中的所有记录重新进行排序。之后采取一定的标准判断这个Key是否还需要保存,如果判断没有保存价值,那么直接抛掉,如果觉得还需要继续保存,那么就将其写入level L+1层中新生成的一个SSTable文件中。就这样对KV数据一一处理,形成了一系列新的L+1层数据文件,之前的L层文件和L+1层参与compaction 的文件数据此时已经没有意义了,所以全部删除。这样就完成了L层和L+1层文件记录的合并过程。
  那么在major compaction过程中,判断一个KV记录是否抛弃的标准是什么呢?其中一个标准是:对于某个key来说,如果在小于L层中存在这个Key,那么这个KV在major compaction过程中可以抛掉。因为我们前面分析过,对于层级低于L的文件中如果存在同一Key的记录,那么说明对于Key来说,有更新鲜的Value存在,那么过去的Value就等于没有意义了,所以可以删除。
  BackgroundCompaction函数
  SST文件的Compaction可以由用户通过接口手动发起,也可以自动触发。LevelDB中触发SST Compaction的因素包括Level 0 SST的个数,其他Level SST文件的总大小,某个文件被访问的次数。Compaction线程一次Compact的过程如下:

  • 首先根据触发Compaction的原因以及维护的相关信息找到本次要Compact的一个SST文件。对于Level 0的文件比较特殊,由于Level 0的SST文件由Memtable在不同时间Dump而成,所以可能有Key重叠。因此除该文件外还需要获得所有与之重叠的Level 0文件。这时我们得到一个包含一个或多个文件的文件集合,处于同一Level。
  • SetupOtherInputs: 在Level+1层获取所有与当前的文件集合有Key重合的文件。
  • DoCompactionWork:对得到的包含相邻两层多个文件的文件集合,进行归并操作并将结果输出到Level + 1层的一个新的SST文件,归并的过程中删除所有过期的数据。删除之前的文件集合里的所有文件。

通过上述过程我们可以看到,这个新生成的文件在其所在Level不会跟任何文件有Key的重叠。

LevelDb 的特点:

  1. 首先,LevelDb是一个持久化存储的KV系统,和Redis这种内存型的KV系统不同,LevelDb不会像Redis一样狂吃内存,而是将大部分数据存储到磁盘上。

  2. 其次,LevelDb在存储数据时,是根据记录的key值有序存储的,就是说相邻的key值在存储文件中是依次顺序存储的,而应用可以自定义key大小比较函数,LevelDb会按照用户定义的比较函数依序存储这些记录。

  3. 再次,像大多数KV系统一样,LevelDb的操作接口很简单,基本操作包括写记录,读记录以及删除记录。也支持针对多条操作的原子批量操作。

  4. 另外,LevelDb支持数据快照(snapshot)功能,使得读取操作不受写操作影响,可以在读操作过程中始终看到一致的数据。

  5. 除此外,LevelDb还支持数据压缩等操作,这对于减小存储空间以及增快IO效率都有直接的帮助。

  6. LevelDb性能非常突出,官方网站报道其随机写性能达到40万条记录每秒,而随机读性能达到6万条记录每秒。总体来说,LevelDb的写操作要大大快于读操作,而顺序读写操作则大大快于随机读写操作。

http://www.frankyang.cn/2017/09/04/%E5%8D%8A%E5%B0%8F%E6%97%B6%E5%AD%A6%E4%BC%9Aleveldb%E5%8E%9F%E7%90%86%E5%8F%8A%E5%BA%94%E7%94%A8/

你可能感兴趣的:(数据库)